receptor knockout mouse
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 23)

H-INDEX

25
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Mahtab Jafari ◽  
Jasmin Grace Juanson Arabit ◽  
Robert Courville ◽  
Dara Kiani ◽  
John M. Chaston ◽  
...  

Abstract Type 2 diabetes is the most prevalent endocrine disease in the world, and recently the gut microbiota have become a potential target for its management. Recent studies have illustrated that this disease may predispose individuals to certain microbiome compositions, and treatments like metformin have been shown to change gut microbiota and their associated metabolic pathways. However, given the limitations and side effects associated with pharmaceuticals currently being used for therapy of diabetes, there is a significant need for alternative treatments. In this study, we investigated the effects of a root extract from Rhodiola rosea in a Leptin receptor knockout (db/db) mouse model of type 2 diabetes. Our previous work showed that Rhodiola rosea had anti-inflammatory and gut microbiome-modulating properties, while extending lifespan in several animal models. In this study, treatment with Rhodiola rosea improved the insulin response, and significantly decreased serum lipopolysaccharide and C-reactive protein levels. We hypothesize that these changes may in part reflect the modulation of the microbiota, resulting in improved gut barrier integrity and decreasing the translocation of inflammatory biomolecules into the bloodstream. These findings indicate that Rhodiola rosea is an attractive candidate for further research in the management of type 2 diabetes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Brian Dean ◽  
Elizabeth Scarr

AbstractPostmortem and neuroimaging studies show low levels of cortical muscarinic M1 receptors (CHRM1) in patients with schizophrenia which is significant because CHRM signalling has been shown to change levels of gene expression and cortical gene expression is altered in schizophrenia. We decided to identify CHRM1-mediated changes in cortical gene expression by measuring levels of RNA in the cortex of the Chrm1−/− mouse (n = 10), where there would be no signalling by that receptor, and in wild type mouse (n = 10) using the Affymetrix Mouse Exon 1.0 ST Array. We detected RNA for 15,501 annotated genes and noncoding RNA of which 1,467 RNAs were higher and 229 RNAs lower in the cortex of the Chrm1−/− mouse. Pathways and proteins affected by the changes in cortical gene expression in the Chrm1−/− are linked to the molecular pathology of schizophrenia. Our human cortical gene expression data showed 47 genes had altered expression in Chrm1−/− mouse and the frontal pole from patients with schizophrenia with the change in expression of 44 genes being in opposite directions. In addition, genes with altered levels of expression in the Chrm1−/− mouse have been shown to affect amyloid precursor protein processing which is associated with the pathophysiology of Alzheimer’s disease, and 69 genes with altered expression in the Chrm1−/− mouse are risk genes associated with human cognitive ability. Our findings argue CHRM1-mediated changes in gene expression are relevant to the pathophysiologies of schizophrenia and Alzheimer’s disease and the maintenance of cognitive ability in humans.


Andrology ◽  
2021 ◽  
Author(s):  
Laura O'Hara ◽  
Helen C. Christian ◽  
Paul Le Tissier ◽  
Lee B. Smith

Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Ari Dienel ◽  
Remya A Veettil ◽  
Kanako Matsumura ◽  
Peeyush Kumar T. ◽  
Spiros Blackburn ◽  
...  

Subarachnoid hemorrhage induces neuronal apoptosis which causes acute and long-term memory deficits. Ourhypothesis is that agonism of α7-acetylcholine receptors attenuates neuronal apoptosis and improves memorydeficits in SAH mice. Mice were randomly assigned into the experimental groups. One cohort was euthanizedone day after SAH to assess neuronal apoptosis and signaling pathways. A second cohort survived for 30 dayspost-SAH to test long-term memory function. Inhibitors and an α7-acetylcholine receptor knockout mouse wereused. Neurobehavioral performance was assessed on days 1-3, 5, 7, and 23-28. All outcomes were performedand all data was analyzed by a blinded investigator. The α7-acetylcholine receptor agonist prevented neuronalapoptosis and improved acute memory deficits caused by SAH via activation of the PI3K/Akt pathway in neurons.Agonism of the α7-acetylcholine receptor was beneficial in both male and female mice, although the protectionin females was significantly better than in male mice. α7-acetylcholine receptor agonism did not provide anybenefit in α7-acetylcholine receptor knockout mice subjected to SAH. Treatment with the α7-acetylcholinereceptor agonist for 3 days after SAH led to improved working memory one month after SAH suggesting thatacutely improving neuronal survival can have long-lasting benefits. The α7-acetylcholine receptor may be atherapeutic target for SAH which can promote neuronal survival acutely after SAH, but also confer long-lastingmemory benefits. The findings of this study support the α7-acetylcholine receptor as a treatment target whichmay attenuate the long-term memory deficits which SAH patients suffer from.


Endocrinology ◽  
2021 ◽  
Vol 162 (5) ◽  
Author(s):  
Kim Carol Jonas ◽  
Adolfo Rivero Müller ◽  
Olayiwola Oduwole ◽  
Hellevi Peltoketo ◽  
Ilpo Huhtaniemi

Abstract Mouse models with altered gonadotropin functions have provided invaluable insight into the functions of these hormones/receptors. Here we describe the repurposing of the infertile and hypogonadal luteinizing hormone receptor (LHR) knockout mouse model (LuRKO), to address outstanding questions in reproductive physiology. Using crossbreeding strategies and physiological and histological analyses, we first addressed the physiological relevance of forced LHR homomerization in female mice using BAC expression of 2 ligand-binding and signaling deficient mutant LHR, respectively, that have previously shown to undergo functional complementation and rescue the hypogonadal phenotype of male LuRKO mice. In female LuRKO mice, coexpression of signaling and binding deficient LHR mutants failed to rescue the hypogonadal and anovulatory phenotype. This was apparently due to the low-level expression of the 2 mutant LHR and potential lack of luteinizing hormone (LH)/LHR-dependent pleiotropic signaling that has previously been shown at high receptor densities to be essential for ovulation. Next, we utilized a mouse model overexpressing human chorionic gonadotropin (hCG) with increased circulating “LH/hCG”-like bioactivity to ~40 fold higher than WT females, to determine if high circulating hCG in the LuRKO background could reveal putative LHR-independent actions. No effects were found, thus, suggesting that LH/hCG mediate their gonadal and non-gonadal effects solely via LHR. Finally, targeted expression of a constitutively active follicle stimulating hormone receptor (FSHR) progressed antral follicles to preovulatory follicles and displayed phenotypic markers of enhanced estrogenic activity but failed to induce ovulation in LuRKO mice. This study highlights the critical importance and precise control of functional LHR and FSHR for mediating ovarian functions and of the potential repurposing of existing genetically modified mouse models in answering outstanding questions in reproductive physiology.


2020 ◽  
Author(s):  
Laura O’Hara ◽  
Helen C. Christian ◽  
Paul Le Tissier ◽  
Lee B. Smith

AbstractCirculating prolactin concentration in rodents and humans is sexually dimorphic. Estrogens are a well-characterised stimulator of prolactin release. Circulating prolactin fluctuates throughout the menstrual/estrous cycle of females in response to estrogen levels, but remains continually low in males. We have previously identified androgens as an inhibitor of prolactin release through characterisation of males of a mouse line with a conditional pituitary androgen receptor knockout (PARKO) which have an increase in circulating prolactin, but unchanged lactotroph number. In the present study we aimed to specify the cell type that androgens act on to repress prolactin release. We examined lactotroph-specific, Pit1 lineage-specific and neural-specific conditional AR knockouts, however they did not duplicate the high circulating prolactin seen in the pituitary androgen receptor knockout line, suggesting that the site of androgen repression of prolactin production was another cell type. Using electron microscopy to examine ultrastructure we showed that pituitary androgen receptor knockout male mice develop lactotrophs that resemble those seen in female mice, and that this is likely to contribute to the increase in circulating prolactin. When castrated, pituitary androgen receptor knockout males have significantly reduced circulating prolactin compared to intact males, which suggests that removal of circulating estrogens as well as androgens reduces the stimulation of pituitary prolactin release. However, when expression of selected estrogen-regulated anterior pituitary genes were examined there were no differences in expression level between controls and knockouts. Further investigation is needed into prolactin regulation by changes in androgen-estrogen balance, which has implications not only in the normal sexual dimorphism of physiology but also in diseases such as hyperprolactinemia.


2020 ◽  
Vol 98 (8) ◽  
pp. 1532-1548 ◽  
Author(s):  
Shangru Lyu ◽  
Mark P. DeAndrade ◽  
Erica L. Unger ◽  
Stefan Mueller ◽  
Alexander Oksche ◽  
...  

2020 ◽  
Author(s):  
Shangru Lyu ◽  
Mark P. DeAndrade ◽  
Erica L. Unger ◽  
Stefan Mueller ◽  
Alexander Oksche ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document