t lymphocyte proliferation
Recently Published Documents


TOTAL DOCUMENTS

394
(FIVE YEARS 32)

H-INDEX

51
(FIVE YEARS 5)

Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1506
Author(s):  
Shujiang Xue ◽  
Kangseok Seo ◽  
Miaosen Yang ◽  
Chengdu Cui ◽  
Meng Yang ◽  
...  

Recombinant protein technology has emerged as an excellent option for vaccine development. However, prior to our study, the immune induction ability of recombinant Mycoplasma suis alpha-enolase (rMseno) in animals remained unclear. The purpose of this study was to develop a rMseno protein subunit vaccine and to determine its ability to elicit an immunological response. To accomplish this, we cloned the gene into pET-15b, expressed it in BL21 cells, and purified it. Following the establishment of immunity, the immunogenicity and potential for protection of rMseno were evaluated in mice and piglets. The results demonstrate that anti-M. suis serum recognized the pure rMseno protein in both mice and piglets as evidenced by high levels of specific anti-rMseno antibodies, significantly increased levels of IFN-γ and IL-4 cytokines, and significantly increased T lymphocyte proliferation index. Piglets also had significantly increased levels of specific IgG1, IgG2a, CD4+, and CD8+ cells. The rMseno findings demonstrated a robust immunological response in mice and piglets, affording partial clinical protective efficacy in piglets.


2021 ◽  
Vol 22 (23) ◽  
pp. 13039
Author(s):  
Sandra Górska-Jakubowska ◽  
Marzenna Klimaszewska ◽  
Piotr Podsadni ◽  
Beata Kaleta ◽  
Radosław Zagożdżon ◽  
...  

In continuation of our research on the influence of selenium incorporation on the biosynthesis, structure, and immunomodulatory and antioxidant activities of polysaccharides of fungal origin, we have isolated from a post-culture medium of Lentinula edodes a selenium (Se)-containing exopolysaccharide fraction composed mainly of a highly branched 1-6-α-mannoprotein of molecular weight 4.5 × 106 Da, with 15% protein component. The structure of this fraction resembled mannoproteins isolated from yeast and other mushroom cultures, but it was characterized by a significantly higher molecular weight. X-ray absorption fine structure spectral analysis in the near edge region (XANES) suggested that selenium in the Se-exopolysaccharide structure was present mainly at the IV oxidation state. The simulation analysis in the EXAFS region suggested the presence of two oxygen atoms in the region surrounding the selenium. On the grounds of our previous studies, we hypothesized that selenium-enriched exopolysaccharides would possess higher biological activity than the non-Se-enriched reference fraction. To perform structure–activity studies, we conducted the same tests of biological activity as for previously obtained mycelial Se-polyglucans. The Se-enriched exopolysaccharide fraction significantly enhanced cell viability when incubated with normal (human umbilical vein endothelial cells (HUVEC)) cells (but this effect was absent for malignant human cervical HeLa cells) and this fraction also protected the cells from oxidative stress conditions. The results of tests on the proliferation of human peripheral blood mononuclear cells suggested a selective immunosuppressive activity, like previously tested Se-polyglucans isolated from L. edodes mycelium. The Se-exopolysaccharide fraction, in concentrations of 10–100 µg/mL, inhibited human T lymphocyte proliferation induced by mitogens, without significant effects on B lymphocytes. As with previously obtained Se-polyglucans, in the currently tested Se-polymannans, the selenium content increased the biological activity. However, the activity of selenium exopolysaccharides in all tests was significantly lower than that of previously tested mycelial isolates, most likely due to a different mode of selenium binding and its higher degree of oxidation.


2021 ◽  
Vol 12 ◽  
Author(s):  
David Pires ◽  
Marta Calado ◽  
Tomás Velez ◽  
Manoj Mandal ◽  
Maria João Catalão ◽  
...  

Tuberculosis owes its resurgence as a major global health threat mostly to the emergence of drug resistance and coinfection with HIV. The synergy between HIV and Mycobacterium tuberculosis (Mtb) modifies the host immune environment to enhance both viral and bacterial replication and spread. In the lung immune context, both pathogens infect macrophages, establishing favorable intracellular niches. Both manipulate the endocytic pathway in order to avoid destruction. Relevant players of the endocytic pathway to control pathogens include endolysosomal proteases, cathepsins, and their natural inhibitors, cystatins. Here, a mapping of the human macrophage transcriptome for type I and II cystatins during Mtb, HIV, or Mtb-HIV infection displayed different profiles of gene expression, revealing cystatin C as a potential target to control mycobacterial infection as well as HIV coinfection. We found that cystatin C silencing in macrophages significantly improves the intracellular killing of Mtb, which was concomitant with an increased general proteolytic activity of cathepsins. In addition, downmodulation of cystatin C led to an improved expression of the human leukocyte antigen (HLA) class II in macrophages and an increased CD4+ T-lymphocyte proliferation along with enhanced IFN-γ secretion. Overall, our results suggest that the targeting of cystatin C in human macrophages represents a promising approach to improve the control of mycobacterial infections including multidrug-resistant (MDR) TB.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259334
Author(s):  
Keila Y. Acevedo-Villanueva ◽  
Sankar Renu ◽  
Revathi Shanmugasundaram ◽  
Gabriel O. Akerele ◽  
Renukaradhy J. Gourapura ◽  
...  

Salmonella control strategies include vaccines that help reduce the spread of Salmonella in poultry flocks. In this study we evaluated the efficacy of administering a live Salmonella vaccine followed by a killed Salmonella chitosan nanoparticle (CNP) vaccine booster on the cellular and humoral immunity of broilers. The CNP vaccine was synthesized with Salmonella Enteritidis (S. Enteritidis) outer-membrane-proteins (OMPs) and flagellin-proteins. At d1-of-age, one-hundred-sixty-eight chicks were allocated into treatments: 1) No vaccine, 2) Live vaccine (Poulvac®ST), 3) CNP vaccine, 4) Live+CNP vaccine. At d1-of-age, birds were orally vaccinated with PBS, Live vaccine, or CNP. At d7-of-age, the No vaccine, Live vaccine and CNP vaccine groups were boosted with PBS and the Live+CNP vaccine group was boosted with CNP. At d14-of-age, birds were challenged with 1×109 CFU/bird S. Enteritidis. There were no significant differences in body-weight-gain (BWG) or feed-conversion-ratio (FCR). At 8h-post-challenge, CNP and Live+CNP-vaccinated birds had 17% and 24% greater levels (P<0.05) of anti-Salmonella OMPs IgA in bile, respectively, compared to control. At d28-of-age, CNP, Live, and Live+CNP-vaccinated birds had 33%, 18%, and 24% greater levels (P<0.05) of anti-Salmonella OMPs IgA in bile, respectively, compared to control. At d14-of-age, Live+CNP-vaccinated birds had 46% greater levels (P<0.05) of anti-Salmonella OMPs IgY in serum, compared to control. At d21-of-age, splenocytes from CNP and Live-vaccinated birds had increased (P<0.05) T-lymphocyte proliferation at 0.02 mg/mL OMPs stimulation compared to the control. At d28-of-age, CNP and Live+CNP-vaccinated birds had 0.9 Log10 CFU/g and 1 Log10 CFU/g decreased S. Enteritidis cecal loads (P<0.05), respectively, compared to control. The CNP vaccine does not have adverse effects on bird’s BWG and FCR or IL-1β, IL-10, IFN-γ, or iNOS mRNA expression levels. It can be concluded that the CNP vaccine, as a first dose or as a booster vaccination, is an alternative vaccine candidate against S. Enteritidis in broilers.


Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5600
Author(s):  
Joseph Schwager ◽  
Nicole Seifert ◽  
Albine Bompard ◽  
Daniel Raederstorff ◽  
Igor Bendik

Vitamins and bioactives, which are constituents of the food chain, modulate T lymphocyte proliferation and differentiation, antibody production, and prevent inflammation and autoimmunity. We investigated the effects of vitamins (vitamin A (VA), D (VD), E (VE)) and bioactives (i.e., resveratrol (Res), epigallocatechin-3-gallate (EGCG)) on the adaptive immune response, as well as their synergistic or antagonistic interactions. Freshly isolated T lymphocytes from healthy individuals were activated with anti-CD3/CD28 antibodies for 4–5 days in the presence of bioactives and were analyzed by cytofluorometry. Interleukins, cytokines, and chemokines were measured by multiple ELISA. Gene expression was measured by quantitative RT-PCR. Res and EGCG increased CD4 surface intensity. EGCG led to an increased proportion of CD8+ lymphocytes. Anti-CD3/CD28 activation induced exuberant secretion of interleukins and cytokines by T lymphocyte subsets. VD strongly enhanced Th2 cytokines (e.g., IL-5, IL-13), whereas Res and EGCG favored secretion of Th1 cytokines (e.g., IL-2, INF-γ). Res and VD mutually influenced cytokine production, but VD dominated the cytokine secretion pattern. The substances changed gene expression of interleukins and cytokines in a similar way as they did secretion. Collectively, VD strongly modulated cytokine and interleukin production and favored Th2 functions. Resveratrol and EGCG promoted the Th1 response. VA and VE had only a marginal effect, but they altered both Th1 and Th2 response. In vivo, bioactives might therefore interact with vitamins and support the outcome and extent of the adaptive immune response.


Author(s):  
Sandra Górska ◽  
Marzenna Klimaszewska ◽  
Piotr Podsadni ◽  
Beata Kaleta ◽  
Radoslaw Zagozdzon ◽  
...  

In continuation of our research on the influence of selenium incorporation on the biosynthesis, structure, immunomodulatory and antioxidant activities of polysaccharides of fungal origin, we have isolated from a post-culture medium of Lentinula edodes a selenium (Se)-containing exopolysaccharide fraction composed mainly of a highly branched 1-6-&alpha;-mannoprotein of molecular weight 4.5x106 Da, with 15% protein component. The structure of this fraction resembled mannoproteins isolated from yeast and other mushroom cultures, but it was characterized by a significantly higher molecular weight. X-ray absorption fine structure spectral analysis in the near edge region (XANES) suggested that selenium in the Se-exopolysaccharide structure was present mainly at the IV oxidation state. The simulation analysis in the EXAFS region suggested the presence of two oxygen atoms in the region surrounding the selenium. On the grounds of our previous studies, we hypothesized that selenium-enriched exopolysaccharides would possess higher biological activity than the non-Se-enriched reference fraction. To perform structure-activity studies, we conducted the same tests of biological activity as for previously obtained mycelial Se-polyglucans. The Se-enriched exopolysaccharide fraction significantly enhanced cell viability when incubated with normal (human umbilical vein endothelial cells, HUVEC) cells (but this effect was absent for malignant human cervical HeLa cells) and this fraction also protected the cells from oxidative stress conditions. The results of tests on the proliferation of human peripheral blood mononuclear cells suggested a selective immunosuppressive activity, like previously tested Se-polyglucans isolated from L. edodes mycelium. The Se-exopolysaccharide fraction, in concentrations of 10-100 &micro;g/ml, inhibited human T lymphocyte proliferation induced by mitogens, without significant effects on B lymphocytes. As with previously obtained Se-polyglucans, in the currently tested Se-polymannans the selenium content increased the biological activity. However, the activity of selenium exopolysaccharides in all tests was significantly lower than that of previously tested mycelial isolates - most likely due to a different mode of selenium binding and its higher degree of oxidation.


Blood ◽  
2021 ◽  
Author(s):  
Genevieve Marcoux ◽  
Audrée Laroche ◽  
Stephan Hasse ◽  
Marie Bellio ◽  
Maroua Mbarik ◽  
...  

In addition to their hemostatic role, platelets play a significant role in immunity. Once activated, platelets release extracellular vesicles (EVs) formed by budding of their cytoplasmic membranes. Because of their heterogeneity, platelet EVs (PEVs) are thought to perform diverse functions. It is unknown, however, whether the proteasome is transferred from platelets to PEVs or whether its function is retained. We hypothesized that functional protein processing and antigen presentation machinery is transferred to PEVs by activated platelets. Using molecular and functional assays, we show that the active 20S proteasome is enriched in PEVs along with MHC-I and lymphocyte costimulatory molecules (CD40L and OX40L). Proteasome-containing PEVs were identified in healthy donor blood, but did not increase in platelet concentrates that caused adverse transfusion reactions. They were, however, augmented after immune complex injections in mice. The complete biodistribution of murine PEVs following injection into mice revealed that they could principally reach lymphoid organs such as spleen and lymph nodes, in addition to the bone marrow, and to a lesser extent liver and lungs. The PEV proteasome processed exogenous ovalbumin (OVA) and loaded its antigenic peptide onto MHC-I molecules which promoted OVA-specific CD8+ T lymphocyte proliferation. These results suggest that PEVs contribute to adaptive immunity through cross-presentation of antigens and have privileged access to immune cells through the lymphatic system, a tissue location that is inaccessible to platelets.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Naoko Kumagai-Takei ◽  
Yasumitsu Nishimura ◽  
Hidenori Matsuzaki ◽  
Suni Lee ◽  
Kei Yoshitome ◽  
...  

Abstract Background Asbestos fibers possess tumorigenicity and are thought to cause mesothelioma. We have previously reported that exposure to asbestos fibers causes a reduction in antitumor immunity. Asbestos exposure in the mixed lymphocyte reaction (MLR) showed suppressed induction of cytotoxic T lymphocytes (CTLs), accompanied by a decrease in proliferation of CD8+ T cells. Recently, we reported that asbestos-induced suppression of CTL induction is not due to insufficient levels of interleukin-2 (IL-2). In this study, we continue to investigate the mechanism responsible for the effect of asbestos fibers on the differentiation of CTLs and focus on interleukin-15 (IL-15) which is known to be a regulator of T lymphocyte proliferation. Methods For MLR, human peripheral blood mononuclear cells (PBMCs) were cultured with irradiated allogenic PBMCs upon exposure to chrysotile B asbestos at 5 μg/ml for 7 days. After 2 days of culture, IL-15 was added at 1 ng/ml. After 7 days of MLR, PBMCs were collected and analyzed for phenotypic and functional markers of CD8+ T cells with fluorescence-labeled anti-CD3, anti-CD8, anti-CD45RA, anti-CD45RO, anti-CD25, and anti-granzyme B antibodies using flow cytometry. To examine the effect of IL-15 on the expression level of intracellular granzyme B in proliferating and non-proliferating CD8+ lymphocytes, PBMCs were stained using carboxyfluorescein diacetate succinimidyl ester (CFSE) and then washed and used for the MLR. Results IL-15 addition partially reversed the decrease in CD3+CD8+ cell numbers and facilitated complete recovery of granzyme B+ cell percentages. IL-15 completely reversed the asbestos-induced decrease in percentage of granzyme B+ cells in both non-proliferating CFSE-positive and proliferating CFSE-negative CD8+ cells. The asbestos-induced decrease in the percentage of CD25+ and CD45RO+ cells in CD8+ lymphocytes was not reversed by IL-15. Conclusion These findings indicate that CTLs induced upon exposure to asbestos possess dysfunctional machinery that can be partly compensated by IL-15 supplementation, and that IL-15 is more effective in the recovery of proliferation and granzyme B levels from asbestos-induced suppression of CTL induction compared with IL-2.


2021 ◽  
Author(s):  
Elisa Claeys ◽  
Eva Pauwels ◽  
Stephanie Humblet-Baron ◽  
Dominique Schols ◽  
Mark Waer ◽  
...  

ABSTRACTThe small molecule cyclotriazadisulfonamide (CADA) down-modulates the human CD4 receptor, an important factor in T cell activation. Here, we addressed the immunosuppressive potential of CADA using in vitro activation models. CADA inhibited lymphocyte proliferation in a mixed lymphocyte reaction, and when human PBMCs were stimulated with CD3/CD28 beads or phytohemagglutinin. The immunosuppressive effect of CADA involved both CD4+ and CD8+ T cells but was, surprisingly, most prominent in the CD8+ T cell subpopulation where it inhibited cell-mediated lympholysis. We discovered a direct down-modulatory effect of CADA on 4-1BB (CD137) expression, a survival factor for activated CD8+ T cells. More specifically, CADA blocked 4-1BB protein biosynthesis by inhibition of its co-translational translocation across the ER membrane in a signal peptide-dependent way. This study demonstrates that CADA, as potent down-modulator of human CD4 and 4-1BB, has promising in vitro immunomodulatory characteristics for future in vivo exploration as immunosuppressive drug.


2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Carlotta De Luca ◽  
Anna Schachner ◽  
Taniya Mitra ◽  
Sarah Heidl ◽  
Dieter Liebhart ◽  
...  

AbstractA recombinant fowl adenovirus (FAdV) fiber protein, derived from a FAdV-8a strain, was tested for its efficacy to protect chickens against inclusion body hepatitis (IBH). FAdV-E field isolates belonging to both a homotypic (FAdV-8a) and heterotypic (-8b) serotype were used as challenge. Mechanisms underlying fiber-induced protective immunity were investigated by fiber-based ELISA, virus neutralization assays and flow cytometry of peripheral blood mononuclear cells, monitoring the temporal developments of humoral and cellular responses after vaccination and challenge exposure. Birds were clinically protected from the homologous challenge and showed a significant reduction of viral load in investigated target organs, whereas fiber-based immunity failed to counteract the heterologous serotype infection. These findings were supported in vitro by the strictly type-specific neutralizing activity of fiber immune sera. In protected birds, fiber vaccination prevented a post-challenge drop of peripheral B cells in blood. Furthermore, fiber immunization stimulated CD4+ T lymphocyte proliferation while moderating the CD8α+ T cell response and prevented challenge-induced changes in systemic monocytes/macrophages and γδ+ T cell subpopulations. Both vaccinated and adjuvant-only injected birds experienced a priming of systemic B cells and TCRγδ+ T lymphocytes, which masked possible pre-challenge effects due to the antigen. In conclusion, within FAdV-E, recombinant fiber represents a vaccine candidate to control the adverse effects of homotypic infection by eliciting an effective humoral immunity and regulating B and T cell response, whereas the failure of heterotypic protection suggests a primordial role of humoral immunity for this vaccine.


Sign in / Sign up

Export Citation Format

Share Document