asymptotic variance
Recently Published Documents


TOTAL DOCUMENTS

319
(FIVE YEARS 64)

H-INDEX

27
(FIVE YEARS 3)

AppliedMath ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 39-53
Author(s):  
Jaya P. N. Bishwal

For stationary ergodic diffusions satisfying nonlinear homogeneous Itô stochastic differential equations, this paper obtains the Berry–Esseen bounds on the rates of convergence to normality of the distributions of the quasi maximum likelihood estimators based on stochastic Taylor approximation, under some regularity conditions, when the diffusion is observed at equally spaced dense time points over a long time interval, the high-frequency regime. It shows that the higher-order stochastic Taylor approximation-based estimators perform better than the basic Euler approximation in the sense of having smaller asymptotic variance.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alejandro Schuler ◽  
David Walsh ◽  
Diana Hall ◽  
Jon Walsh ◽  
Charles Fisher

Abstract Estimating causal effects from randomized experiments is central to clinical research. Reducing the statistical uncertainty in these analyses is an important objective for statisticians. Registries, prior trials, and health records constitute a growing compendium of historical data on patients under standard-of-care that may be exploitable to this end. However, most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control. Here, we propose a use of historical data that exploits linear covariate adjustment to improve the efficiency of trial analyses without incurring bias. Specifically, we train a prognostic model on the historical data, then estimate the treatment effect using a linear regression while adjusting for the trial subjects’ predicted outcomes (their prognostic scores). We prove that, under certain conditions, this prognostic covariate adjustment procedure attains the minimum variance possible among a large class of estimators. When those conditions are not met, prognostic covariate adjustment is still more efficient than raw covariate adjustment and the gain in efficiency is proportional to a measure of the predictive accuracy of the prognostic model above and beyond the linear relationship with the raw covariates. We demonstrate the approach using simulations and a reanalysis of an Alzheimer’s disease clinical trial and observe meaningful reductions in mean-squared error and the estimated variance. Lastly, we provide a simplified formula for asymptotic variance that enables power calculations that account for these gains. Sample size reductions between 10% and 30% are attainable when using prognostic models that explain a clinically realistic percentage of the outcome variance.


2021 ◽  
Vol 11 (1) ◽  
pp. 29
Author(s):  
Yu Hang Jiang ◽  
Tong Liu ◽  
Zhiya Lou ◽  
Jeffrey S. Rosenthal ◽  
Shanshan Shangguan ◽  
...  

We derive explicit asymptotic confidence intervals for any Markov chain Monte Carlo (MCMC) algorithm with finite asymptotic variance, started at any initial state, without requiring a Central Limit Theorem nor reversibility nor geometric ergodicity nor any bias bound. We also derive explicit non-asymptotic confidence intervals assuming bounds on the bias or first moment, or alternatively that the chain starts in stationarity. We relate those non-asymptotic bounds to properties of MCMC bias, and show that polynomially ergodicity implies certain bias bounds. We also apply our results to several numerical examples. It is our hope that these results will provide simple and useful tools for estimating errors of MCMC algorithms when CLTs are not available.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2387
Author(s):  
Xiaoshuang Zhou ◽  
Xiulian Gao ◽  
Yukun Zhang ◽  
Xiuling Yin ◽  
Yanfeng Shen

In this article, we focus on the efficient estimators of the derivative of the nonparametric function in the nonparametric quantile regression model. We develop two ways of combining quantile regression information to derive the estimators. One is the weighted composite quantile regression estimator based on the quantile weighted loss function; the other is the weighted quantile average estimator based on the weighted average of quantile regression estimators at a single quantile. Furthermore, by minimizing the asymptotic variance, the optimal weight vector is computed, and consequently, the optimal estimator is obtained. Furthermore, we conduct some simulations to evaluate the performance of our proposed estimators under different symmetric error distributions. Simulation studies further illustrate that both estimators work better than the local linear least square estimator for all the symmetric errors considered except the normal error, and the weighted quantile average estimator performs better than the weighted composite quantile regression estimator in most situations.


2021 ◽  
pp. 174077452110598
Author(s):  
Lee Kennedy-Shaffer ◽  
Michael D Hughes

Background/Aims Generalized estimating equations are commonly used to fit logistic regression models to clustered binary data from cluster randomized trials. A commonly used correlation structure assumes that the intracluster correlation coefficient does not vary by treatment arm or other covariates, but the consequences of this assumption are understudied. We aim to evaluate the effect of allowing variation of the intracluster correlation coefficient by treatment or other covariates on the efficiency of analysis and show how to account for such variation in sample size calculations. Methods We develop formulae for the asymptotic variance of the estimated difference in outcome between treatment arms obtained when the true exchangeable correlation structure depends on the treatment arm and the working correlation structure used in the generalized estimating equations analysis is: (i) correctly specified, (ii) independent, or (iii) exchangeable with no dependence on treatment arm. These formulae require a known distribution of cluster sizes; we also develop simplifications for the case when cluster sizes do not vary and approximations that can be used when the first two moments of the cluster size distribution are known. We then extend the results to settings with adjustment for a second binary cluster-level covariate. We provide formulae to calculate the required sample size for cluster randomized trials using these variances. Results We show that the asymptotic variance of the estimated difference in outcome between treatment arms using these three working correlation structures is the same if all clusters have the same size, and this asymptotic variance is approximately the same when intracluster correlation coefficient values are small. We illustrate these results using data from a recent cluster randomized trial for infectious disease prevention in which the clusters are groups of households and modest in size (mean 9.6 individuals), with intracluster correlation coefficient values of 0.078 in the control arm and 0.057 in an intervention arm. In this application, we found a negligible difference between the variances calculated using structures (i) and (iii) and only a small increase (typically [Formula: see text]) for the independent correlation structure (ii), and hence minimal effect on power or sample size requirements. The impact may be larger in other applications if there is greater variation in the ICC between treatment arms or with an additional covariate. Conclusion The common approach of fitting generalized estimating equations with an exchangeable working correlation structure with a common intracluster correlation coefficient across arms likely does not substantially reduce the power or efficiency of the analysis in the setting of a large number of small or modest-sized clusters, even if the intracluster correlation coefficient varies by treatment arm. Our formulae, however, allow formal evaluation of this and may identify situations in which variation in intracluster correlation coefficient by treatment arm or another binary covariate may have a more substantial impact on power and hence sample size requirements.


Author(s):  
Chris Sherlock ◽  
Anthony Lee

AbstractA delayed-acceptance version of a Metropolis–Hastings algorithm can be useful for Bayesian inference when it is computationally expensive to calculate the true posterior, but a computationally cheap approximation is available; the delayed-acceptance kernel targets the same posterior as its associated “parent” Metropolis-Hastings kernel. Although the asymptotic variance of the ergodic average of any functional of the delayed-acceptance chain cannot be less than that obtained using its parent, the average computational time per iteration can be much smaller and so for a given computational budget the delayed-acceptance kernel can be more efficient. When the asymptotic variance of the ergodic averages of all $$L^2$$ L 2 functionals of the chain are finite, the kernel is said to be variance bounding. It has recently been noted that a delayed-acceptance kernel need not be variance bounding even when its parent is. We provide sufficient conditions for inheritance: for non-local algorithms, such as the independence sampler, the discrepancy between the log density of the approximation and that of the truth should be bounded; for local algorithms, two alternative sets of conditions are provided. As a by-product of our initial, general result we also supply sufficient conditions on any pair of proposals such that, for any shared target distribution, if a Metropolis-Hastings kernel using one of the proposals is variance bounding then so is the Metropolis-Hastings kernel using the other proposal.


2021 ◽  
Vol 2106 (1) ◽  
pp. 012013
Author(s):  
N Salam

Abstract This paper will discuss the estimation of a partially linear (semiparametric) model with missing responses using the normal approach. An estimator class is defined which includes special cases, namely the partially linear imputation estimator, the marginal mean estimator and the trend score weighted estimator. The estimator class is asymptotically normal. The three special estimators have the same asymptotic variance. Based on the above conditions, the mean F will be estimated, say θ. The three special estimators above will be used to estimate the mean F, namely in the form of point estimates and confidence intervals with some missing responses using the normal approach method.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alejandro Schuler

Abstract Trials enroll a large number of subjects in order to attain power, making them expensive and time-consuming. Sample size calculations are often performed with the assumption of an unadjusted analysis, even if the trial analysis plan specifies a more efficient estimator (e.g. ANCOVA). This leads to conservative estimates of required sample sizes and an opportunity for savings. Here we show that a relatively simple formula can be used to estimate the power of any two-arm, single-timepoint trial analyzed with a semiparametric efficient estimator, regardless of the domain of the outcome or kind of treatment effect (e.g. odds ratio, mean difference). Since an efficient estimator attains the minimum possible asymptotic variance, this allows for the design of trials that are as small as possible while still attaining design power and control of type I error. The required sample size calculation is parsimonious and requires the analyst to provide only a small number of population parameters. We verify in simulation that the large-sample properties of trials designed this way attain their nominal values. Lastly, we demonstrate how to use this formula in the “design” (and subsequent reanalysis) of a real randomized trial and show that fewer subjects are required to attain the same design power when a semiparametric efficient estimator is accounted for at the design stage.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2092
Author(s):  
Songbai Song ◽  
Yan Kang ◽  
Xiaoyan Song ◽  
Vijay P. Singh

The choice of a probability distribution function and confidence interval of estimated design values have long been of interest in flood frequency analysis. Although the four-parameter exponential gamma (FPEG) distribution has been developed for application in hydrology, its maximum likelihood estimation (MLE)-based parameter estimation method and asymptotic variance of its quantiles have not been well documented. In this study, the MLE method was used to estimate the parameters and confidence intervals of quantiles of the FPEG distribution. This method entails parameter estimation and asymptotic variances of quantile estimators. The parameter estimation consisted of a set of four equations which, after algebraic simplification, were solved using a three dimensional Levenberg-Marquardt algorithm. Based on sample information matrix and Fisher’s expected information matrix, derivatives of the design quantile with respect to the parameters were derived. The method of estimation was applied to annual precipitation data from the Weihe watershed, China and confidence intervals for quantiles were determined. Results showed that the FPEG was a good candidate to model annual precipitation data and can provide guidance for estimating design values


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1286
Author(s):  
Yenni Angraini ◽  
Khairil Anwar Notodiputro ◽  
Henk Folmer ◽  
Asep Saefuddin ◽  
Toni Toharudin

This paper deals with symmetrical data that can be modelled based on Gaussian distribution, such as linear mixed models for longitudinal data. The latent factor linear mixed model (LFLMM) is a method generally used for analysing changes in high-dimensional longitudinal data. It is usual that the model estimates are based on the expectation-maximization (EM) algorithm, but unfortunately, the algorithm does not produce the standard errors of the regression coefficients, which then hampers testing procedures. To fill in the gap, the Supplemented EM (SEM) algorithm for the case of fixed variables is proposed in this paper. The computational aspects of the SEM algorithm have been investigated by means of simulation. We also calculate the variance matrix of beta using the second moment as a benchmark to compare with the asymptotic variance matrix of beta of SEM. Both the second moment and SEM produce symmetrical results, the variance estimates of beta are getting smaller when number of subjects in the simulation increases. In addition, the practical usefulness of this work was illustrated using real data on political attitudes and behaviour in Flanders-Belgium.


Sign in / Sign up

Export Citation Format

Share Document