locally inverse semigroup
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

2020 ◽  
Vol 18 (1) ◽  
pp. 1491-1500
Author(s):  
Yingdan Ji

Abstract In this paper, we study the strong nil-cleanness of certain classes of semigroup rings. For a completely 0-simple semigroup M={ {\mathcal M} }^{0}(G;I,\text{Λ};P) , we show that the contracted semigroup ring {R}_{0}{[}M] is strongly nil-clean if and only if either |I|=1 or |\text{Λ}|=1 , and R{[}G] is strongly nil-clean; as a corollary, we characterize the strong nil-cleanness of locally inverse semigroup rings. Moreover, let S={[}Y;{S}_{\alpha },{\varphi }_{\alpha ,\beta }] be a strong semilattice of semigroups, then we prove that R{[}S] is strongly nil-clean if and only if R{[}{S}_{\alpha }] is strongly nil-clean for each \alpha \in Y .


2011 ◽  
Vol 10 (06) ◽  
pp. 1165-1186 ◽  
Author(s):  
XUEMING REN ◽  
DANDAN YANG ◽  
K. P. SHUM

It was first proved by McAlister in 1983 that every locally inverse semigroup is a locally isomorphic image of a regular Rees matrix semigroup over an inverse semigroup and Lawson in 2000 further generalized this result to some special locally adequate semigroups. In this paper, we show how these results can be extended to a class of locally Ehresmann semigroups.


2008 ◽  
Vol 36 (9) ◽  
pp. 3230-3249 ◽  
Author(s):  
Francis J. Pastijn ◽  
Luís A. Oliveira

2008 ◽  
Vol 45 (3) ◽  
pp. 395-409 ◽  
Author(s):  
Francis Pastijn ◽  
Luís Oliveira

The translational hull of a locally inverse semigroup has a largest locally inverse subsemigroup containing the inner part. A construction is given for ideal extensions within the class of all locally inverse semigroups.


Author(s):  
Xiaojiang Guo

LetRbe a commutative ring andSa finite locally inverse semigroup. It is proved that the semigroup algebraR[S]is isomorphic to the direct product of Munn algebrasℳ(R[GJ],mJ,nJ;PJ)withJ∈S/𝒥, wheremJis the number ofℛ-classes inJ,nJthe number ofℒ-classes inJ, andGJa maximum subgroup ofJ. As applications, we obtain the sufficient and necessary conditions for the semigroup algebra of a finite locally inverse semigroup to be semisimple.


2001 ◽  
Vol 44 (1) ◽  
pp. 173-186 ◽  
Author(s):  
Tanveer A. Khan ◽  
Mark V. Lawson

AbstractMcAlister proved that every regular locally inverse semigroup can be covered by a regular Rees matrix semigroup over an inverse semigroup by means of a homomorphism which is locally an isomorphism. We generalize this result to the class of semigroups with local units whose local submonoids have commuting idempotents and possessing what we term a ‘McAlister sandwich function’.AMS 2000 Mathematics subject classification: Primary 20M10. Secondary 20M17


1996 ◽  
Vol 06 (05) ◽  
pp. 541-551
Author(s):  
TERUO IMAOKA ◽  
ISAMU INATA ◽  
HIROAKI YOKOYAMA

The first author obtained a generalization of Preston-Vagner Representation Theorem for generalized inverse *-semigroups. In this paper, we shall generalize their results for locally inverse *-semigroups. Firstly, by introducing a concept of a π-set (which is slightly different from the one in [7]), we shall construct the π-symmetric locally inverse *-semigroup on a π-set, and show that any locally inverse *-semigroup can be embedded up to *-isomorphism in the π-symmetric locally inverse semigroup on a π-set. Moreover, we shall obtain that the wreath product of locally inverse *-semigroups is also a locally inverse *-semigroup.


Sign in / Sign up

Export Citation Format

Share Document