intact virus
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 19)

H-INDEX

27
(FIVE YEARS 2)

Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1361
Author(s):  
Ah-Young Kim ◽  
Sun Young Park ◽  
Sang Hyun Park ◽  
Jong Sook Jin ◽  
Eun-Sol Kim ◽  
...  

Foot-and-mouth disease (FMD), caused by the FMD virus (FMDV), is controlled by vaccine policy in many countries. For vaccine potency, the content of intact virus particles (146S antigens) is critical, and the sucrose density gradient (SDG) fractionation is the gold standard for the quantification of 146S antigens. However, this method has several drawbacks. Although size-exclusion high-performance liquid chromatography (SE-HPLC) was introduced to replace the classic method, its application is generally confined to purified samples owing to the interfering signals. Therefore, we aimed to develop optimal pretreatment methods for SE-HPLC quantification in less purified samples. Crude virus infection supernatant (CVIS) and semi-purified samples with PEG precipitation (PEG-P) were used. Chloroform pretreatment was essential to remove a high level of non-specific signals in CVIS, whereas it caused loss of 146S antigens without the distinctive removal of non-specific signals in PEG-P. Benzonase pretreatment was required to improve the resolution of the target peak in the chromatogram for both CVIS and PEG-P. Through spiking tests with pure 146S antigens, it was verified that the combined pretreatment with chloroform and benzonase was optimal for the CVIS, while the sole pretreatment of benzonase was beneficial for PEG-P.


2021 ◽  
Author(s):  
Beibei Wang ◽  
Changqing Zhong ◽  
D. Peter Tieleman

The coronavirus disease 19 (COVID-19) pandemic is causing a global health crisis and has already caused a devastating societal and economic burden. The pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has a high sequence and architecture identity with SARS-CoV, but far more people have been infected by SARS-CoV-2. Here, combining structural data from cryo-EM and structure prediction, we constructed bottom-up Martini coarse-grained models of intact SARS-CoV and SARS-CoV-2 envelopes. Microsecond molecular dynamics simulations were performed, allowing us to explore their dynamics and supramolecular organization. Both SARS-CoV and SARS-CoV-2 envelopes present a spherical morphology with structural proteins forming multiple string-like islands in the membrane and clusters between heads of spike proteins. Critical differences between the SARS-CoV and SARS-CoV-2 envelopes are the interaction pattern between spike proteins and the flexibility of spike proteins. Our models provide structural and dynamic insights in the SARS virus envelopes, and could be used for further investigation, such as drug design, and fusion and fission processes.


2021 ◽  
Author(s):  
Erin E. Schirtzinger ◽  
Yunjeong Kim ◽  
A. Sally Davis

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has renewed interest in human coronaviruses that cause the common cold, particularly as research with them at biosafety level (BSL)-2 avoids the added costs and biosafety concerns that accompany work with SARS-COV-2, BSL-3 research. One of these, human coronavirus OC43 (HCoV-OC43), is a well-matched surrogate for SARS-CoV-2 because it is also a Betacoronavirus, targets the human respiratory system, is transmitted via respiratory aerosols and droplets and is relatively resistant to disinfectants. Unfortunately, growth of HCoV-OC43 in the recommended human colon cancer (HRT-18) cells does not produce obvious cytopathic effect (CPE) and its titration in these cells requires expensive antibody-based detection. Consequently, multiple quantification approaches for HCoV-OC43 using alternative cell lines exist, which complicates comparison of research results. Hence, we investigated the basic growth parameters of HCoV-OC43 infection in three of these cell lines (HRT-18, human lung fibroblasts (MRC-5) and African green monkey kidney (Vero E6) cells) including the differential development of cytopathic effect (CPE) and explored reducing the cost, time and complexity of antibody-based detection assay. Multi-step growth curves were conducted in each cell type in triplicate at a multiplicity of infection of 0.1 with daily sampling for seven days. Samples were quantified by tissue culture infectious dose50(TCID50)/ml or plaque assay (cell line dependent) and additionally analyzed on the Sartorius Virus Counter 3100 (VC), which uses flow virometry to count the total number of intact virus particles in a sample. We improved the reproducibility of a previously described antibody-based detection based TCID50 assay by identifying commercial sources for antibodies, decreasing antibody concentrations and simplifying the detection process. The growth curves demonstrated that HCoV-O43 grown in MRC-5 cells reached a peak titer of ~107 plaque forming units/ml at two days post infection (dpi). In contrast, HCoV-OC43 grown on HRT-18 cells required six days to reach a peak titer of ~106.5 TCID50/ml. HCoV-OC43 produced CPE in Vero E6 cells but these growth curve samples failed to produce CPE in a plaque assay after four days. Analysis of the VC data in combination with plaque and TCID50 assays together revealed that the defective:infectious virion ratio of MRC-5 propagated HCoV-OC43 was less than 3:1 for 1-6 dpi while HCoV-OC43 propagated in HRT-18 cells varied from 41:1 at 1 dpi, to 329:4 at 4 dpi to 94:1 at 7 dpi. These results should enable better comparison of extant HCoV-OC43 study results and prompt further standardization efforts.


2021 ◽  
Author(s):  
Muhammad Hamza ◽  
Muhammad Zuhaib Khan ◽  
Roma Mustafa ◽  
Hira Kamal ◽  
Aneela Hussain ◽  
...  

Abstract Clustered regularly interspaced palindromic repeats (CRISPR) and associated Cas9 nuclease (CRISPR-Cas9) systems provide adaptive immunity to prokaryotes against infectious phage particles that can be engineered as a genome-editing tool. Guided by an RNA strand, the class II type II CRISPR-Cas9 system can be employed to provide resistance against plant DNA viruses. Here we describe an efficient CRISPR-Cas9 genome editing system based on simultaneous targeting of the highly conserved intergenic region (IR) of the virus that can provide resistance against Cotton leaf curl Kokhran virus-Burewala strain (CLCuKoV-Bur) in Nicotiana benthamiana plants. The data revealed that upon infection, the transgenic plants harboring CRISPR-Cas9 and two gRNAs showed complete resistance against CLCuKoV-Bur/Cotton leaf curl Multan betasatellite (CLCuMB). All efforts failed to find the intact virus in CLCuKoV-Bur/CLCuMB challenged transgenic (OX:Cas9NB:IR) plants using either gene specific PCR primers or CLCuKoV-Bur as a probe in southern blot hybridization. Thus, our results have demonstrated an efficient CRISPR-Cas9 approach to engineer durable resistance against CLCuKoV-Bur in a model system. The implications of these findings are discussed.


2021 ◽  
Author(s):  
Subhanjan Mondal ◽  
Nathan Feirer ◽  
Michael Brockman ◽  
Melanie Preston ◽  
Sarah Teter ◽  
...  

Studies have demonstrated that SARS-CoV-2 RNA can be detected in the feces of infected individuals. This finding spurred investigation into using wastewater-based epidemiology (WBE) to monitor SARS-CoV-2 RNA and track the appearance and spread of COVID-19 in communities. SARS-CoV-2 is present at low levels in wastewater, making sample concentration a prerequisite for sensitive detection and utility in WBE. Whereas common methods for isolating viral genetic material are biased toward intact virus isolation, it is likely that a relatively low percentage of the total SARS-CoV-2 RNA genome in wastewater is contained within intact virions. Therefore, we hypothesized that a direct unbiased total nucleic acid extraction method could overcome the cumbersome protocols, variability and low recovery rates associated with the former methods. This led to development of a simple, rapid, and modular alternative to existing purification methods. In an initial concentration step, chaotropic agents are added to raw sewage allowing binding of nucleic acid from free nucleoprotein complexes, partially intact, and intact virions to a silica matrix. The eluted nucleic acid is then purified using manual or semi-automated methods. RT-qPCR enzyme mixes were formulated that demonstrate substantial inhibitor resistance. In addition, multiplexed probe-based RT-qPCR assays detecting the N1, N2 (nucleocapsid) and E (envelope) gene fragments of SARS-CoV-2 were developed. The RT-qPCR assays also contain primers and probes to detect Pepper Mild Mottle Virus (PMMoV), a fecal indicator RNA virus present in wastewater, and an exogenous control RNA to measure effects of RT-qPCR inhibitors. Using this workflow, we monitored wastewater samples from three wastewater treatment plants (WWTP) in Dane County, Wisconsin. We also successfully sequenced a subset of samples to ensure compatibility with a SARS-CoV-2 amplicon panel and demonstrated the potential for SARS-CoV-2 variant detection. Data obtained here underscore the potential for wastewater surveillance of SARS-CoV-2 and other infectious agents in communities.


Author(s):  
Huicheng Shi ◽  
John Yin

Since 2014, an Asian lineage of Zika virus has caused outbreaks, and it has been associated with neurological disorders in adults and congenital defects in newborns. The resulting threat of the Zika virus to human health has prompted the development of new vaccines, which have yet to be approved for human use. Vaccines based on the attenuated or chemically inactivated virus will require large-scale production of the intact virus to meet potential global demands. Intact viruses are produced by infecting cultures of susceptible cells, a dynamic process that spans from hours to days and has yet to be optimized. Here, we infected Vero cells adhesively cultured in well-plates with two Zika virus strains: a recently isolated strain from the Asian lineage, and a cell-culture-adapted strain from the African lineage. At different time points post-infection, virus particles in the supernatant were quantified; further, microscopy images were used to quantify cell density and the proportion of cells expressing viral protein. These measurements were performed across multiple replicate samples of one-step infections every four hours over 60 hours and for multi-step infections every four to 24 hours over 144 hours, generating a rich dataset. For each set of data, mathematical models were developed to estimate parameters associated with cell infection and virus production. The African-lineage strain was found to produce a 14-fold higher yield than the Asian-lineage strain in one-step growth and a 7-fold higher titer in multi-step growth, suggesting a benefit of cell-culture adaptation for developing a vaccine strain. We found that image-based measurements were critical for discriminating among different models, and different parameters for the two strains could account for the experimentally observed differences. An exponential-distributed delay model performed best in accounting for multi-step infection of the Asian strain, and it highlighted the significant sensitivity of virus titer to the rate of viral degradation, with implications for optimization of vaccine production. More broadly, this work highlights how image-based measurements can contribute to discrimination of virus-culture models for the optimal production of inactivated and attenuated whole-virus vaccines.


2021 ◽  
Author(s):  
Thomas R. Carey ◽  
Molly Kozminsky ◽  
Jennifer Hall ◽  
Valerie Vargas-Zapata ◽  
Kristina Geiger ◽  
...  

AbstractThe persistence of the COVID-19 pandemic demands a dramatic increase in testing efficiency. Testing pooled samples for SARS-CoV-2 could meet this need; however, the sensitivity of RT-qPCR, the gold standard, significantly decreases with an increasing number of samples pooled. Here, we introduce DIVER, a method that quantifies intact virus and is robust to sample dilution. DIVER first tags viral particles with exogeneous oligonucleotides, then captures the tagged particles on ACE2-functionalized beads, and finally quantifies the oligonucleotide tags using qPCR. Using spike-presenting liposomes and Spike-pseudotyped lentivirus as SARS-CoV-2 models, we show that DIVER can detect 1×105 liposomes and 100 pfu lentivirus and can successfully identify positive samples in pooling experiments. Overall, DIVER is well-positioned for efficient sample pooling and expanded community surveillance.


Author(s):  
E. Alperay Tarim ◽  
Betul Karakuzu ◽  
Cemre Oksuz ◽  
Oyku Sarigil ◽  
Melike Kizilkaya ◽  
...  

AbstractWith the recent SARS-CoV-2 outbreak, the importance of rapid and direct detection of respiratory disease viruses has been well recognized. The detection of these viruses with novel technologies is vital in timely prevention and treatment strategies for epidemics and pandemics. Respiratory viruses can be detected from saliva, swab samples, nasal fluid, and blood, and collected samples can be analyzed by various techniques. Conventional methods for virus detection are based on techniques relying on cell culture, antigen-antibody interactions, and nucleic acids. However, these methods require trained personnel as well as expensive equipment. Microfluidic technologies, on the other hand, are one of the most accurate and specific methods to directly detect respiratory tract viruses. During viral infections, the production of detectable amounts of relevant antibodies takes a few days to weeks, hampering the aim of prevention. Alternatively, nucleic acid–based methods can directly detect the virus-specific RNA or DNA region, even before the immune response. There are numerous methods to detect respiratory viruses, but direct detection techniques have higher specificity and sensitivity than other techniques. This review aims to summarize the methods and technologies developed for microfluidic-based direct detection of viruses that cause respiratory infection using different detection techniques. Microfluidics enables the use of minimal sample volumes and thereby leading to a time, cost, and labor effective operation. Microfluidic-based detection technologies provide affordable, portable, rapid, and sensitive analysis of intact virus or virus genetic material, which is very important in pandemic and epidemic events to control outbreaks with an effective diagnosis.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1405
Author(s):  
Sun Young Park ◽  
Jung-Min Lee ◽  
Ah-Young Kim ◽  
Sang Hyun Park ◽  
Jae-Seok Kim ◽  
...  

Although polyethylene glycol (PEG) application is the most widely used method in removing nonstructural proteins (NSPs) for foot-and-mouth disease (FMD) vaccine production, some NSPs remaining in the antigen could elicit antibodies against these proteins after repeated vaccinations in livestock. Therefore, the purpose of this study was to purify the FMD virus (FMDV) via affinity chromatography using a heparin ligand to remove most proteins, including NSPs. Chromatography showed an intact virus (146S) particle recovery of 70% or more for three different strains of serotype O FMDV (two locally isolated strains and one genetically modified strain). The experimental vaccine made with antigens eluted via heparin affinity chromatography elicited virus-neutralizing antibodies against homologous viruses but did not induce antibodies against NSPs even after five immunizations in goats; this indicated that the NSPs were effectively removed from the vaccine antigen. This method can then be used to produce a higher-quality vaccine compared with PEG application in terms of the purity of the FMD vaccine. Therefore, this result would be an important groundwork for advanced FMD vaccine manufacturing in the near future.


Sign in / Sign up

Export Citation Format

Share Document