spin echo sequence
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 46)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 8 ◽  
Author(s):  
Bihui Zhang ◽  
Ziping Yao ◽  
Weizheng Gao ◽  
Chengyan Wang ◽  
Hanjing Kong ◽  
...  

Background: Early diagnosis of acute kidney injury (AKI) is essential in clinical settings. None of the current biomarkers are widely applied. The combination of pulse-shifting multi-echo asymmetric spin-echo sequence (psMASE) and a modified hemodynamic response imaging (HRI) technique is promising. The purpose of this study was to evaluate the feasibility of psMASE combined with HRI in detecting early ischemic AKI in animal models of different severities.Methods: Twenty rabbits were divided into four groups (mild, moderate, and severe AKI and control groups). Transarterial embolization with different doses of microspheres was performed to establish AKI animal models of different severities. The 3T psMASE and HRI scans of kidneys were conducted. The R2*, R2, and R2' during room air and gas stimulation were acquired and the difference of R2' (dR2') was evaluated in different AKI groups.Results: The values were not different in R2* and R2 during room air and in R2* and R2, and R2' during gas stimulation. The value of R2' was significantly different during room air (P = 0.014), but the difference was only found between control and moderate/severe AKI groups (P = 0.032 and 0.022). The values of dR2' were different among groups (P < 0.0001) and differences between every two groups except comparison of moderate and severe AKI groups were significant (P < 0.01).Conclusion: The dR2' imaging acquired by a combination of renal psMASE and HRI technique can serve as a potential quantitative biomarker for early detection and staging of AKI.


Author(s):  
Diana Bencikova ◽  
Fei Han ◽  
Stephan Kannengieser ◽  
Marcus Raudner ◽  
Sarah Poetter-Lang ◽  
...  

Abstract Objectives T2 mapping of the liver is a potential diagnostic tool, but conventional techniques are difficult to perform in clinical practice due to long scan time. We aimed to evaluate the accuracy of a prototype radial turbo-spin-echo (rTSE) sequence, optimized for multi-slice T2 mapping in the abdomen during one breath-hold at 3 T. Methods A multi-sample (fat: 0–35%) agarose phantom doped with MnCl2 and 80 subjects (73 patients undergoing abdomen MR examination and 7 healthy volunteers) were investigated. A radial turbo-spin-echo (rTSE) sequence with and without fat suppression, a Cartesian turbo-spin-echo (Cart-TSE) sequence, and a single-voxel multi-echo STEAM spectroscopy (HISTO) were performed in phantom, and fat-suppressed rTSE and HISTO sequences were performed in in vivo measurements. Two approaches were used to sample T2 values: manually selected circular ROIs and whole liver analysis with Gaussian mixture models (GMM). Results The rTSE-T2s values exhibited a strong correlation with Cart-TSE-T2s (R2 = 0.988) and with HISTO-T2s of water (R2 = 0.972) in phantom with an offset between rTSE and Cart-TSE maps (mean difference = 3.17 ± 1.18 ms). The application of fat suppression decreased T2 values, and the effect was directly proportional to the amount of fat. Measurements in patients yielded a linear relationship between rTSE- and HISTO-T2s (R2 = 0.546 and R2 = 0.580 for ROI and GMM, respectively). Conclusion The fat-suppressed rTSE sequence allows for fast and accurate determination of T2 values of the liver, and appears to be suitable for further large cohort studies. Key Points •Radial turbo-spin-echo T2 mapping performs comparably to Cartesian TSE-T2 mapping, but an offset in values is observed in phantom measurements. •Fat-suppressed radial turbo-spin-echo T2 mapping is consistent with T2 of water as assessed by MRS in phantom measurements. •Fat-suppressed radial turbo-spin-echo sequence allows fast T2 mapping of the liver in a single breath-hold and is correlated with MRS-based T2 of water.


2021 ◽  
Vol 11 (24) ◽  
pp. 12077
Author(s):  
Jialu Zhang ◽  
Xiaotong Zhang

Magnetic resonance imaging (MRI) integrates a static magnetic field, a time-varying gradient magnetic field at kHz and a radio-frequency (RF) magnetic field for non-invasive and real-time imaging; meanwhile, diffusion MRI (dMRI) pushes a further and closer dimension to the scale of neural fibers through sensitizing the gradient field to recognize water molecular displacement over distances of 1~20 μm along fibers. Contemporary dMRI approaches face challenges of magnetic field inhomogeneity as well as sequence-associated distortion and signal loss, the common remedies of which are repeated scans and post-reconstruction algorithms. In this study, over an anesthetized macaque with a customized head coil on 3 T MRI, we have proposed and implemented a monopolar diffusion-prepared module for turbo spin echo sequence (DP-TSE) as an alternative to achieve distortion-free, high-resolution diffusion imaging with improved SNR. The results showed high image quality and SNR efficiency as compared with conventional dMRI methods at millimeter level, allowing us to pursue submillimeter-scale dMRI over non-human primates (NHPs) in a relatively short scan time and without repetitions or post-processing, which could merit and advance our understanding of the structure and organizations of the primate’s brain.


Children ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 797
Author(s):  
Shin-Eui Park ◽  
Ji-Ye Ahn ◽  
Eun-Young Kim

Objective: Although there have been several studies on the neuroanatomical changes in idiopathic central precocious puberty (ICPP), the association between each brain region and ICPP has not yet been clearly elucidated. This study aimed to evaluate the difference in brain structure in ICPP compared with age-matched healthy controls and normal puberty controls, and additionally the correlation between brain volume difference and the luteinizing hormone (LH). Materials and Methods: The study enrolled fifteen girls with ICPP, as well as 15 age-matched healthy girls and 15 normal puberty girls as controls. The subjects underwent a 1.5 Tesla Avanto MR Scanner. Anatomical T1-weighted images were acquired with a T1 spin-echo sequence. The volumes of total and regional brain were compared with each of the two control groups and analyzed through the paired T-test, and the brain region related to the peak LH level was also analyzed through a simple correlation test. Results: The mean age of the ICPP group, age-matched group, and puberty group were 8.0 ± 0.9 years, 7.8 ± 0.9 years, and 11.9 ± 0.9 years, respectively. In our findings, the regional cerebral volumes in ICPP were different from age-matched controls. Compared with controls, ICPP showed a significant increase in gray matter (GM) volumes (the medial prefrontal cortex, superior parietal gyrus, supramarginal gyrus, angular gyrus, postcentral gyrus, superior occipital gyrus, cuneus, hippocampus, parahippocampal gyrus, posterior cingulate gyrus (PCgG), cerebellar cortex (Cb)) and in white matter (WM) volumes (the insular, caudate, splenium of corpus callosum (p < 0.001)). Especially, the GM volumes of the PCgG (r = 0.57, p = 0.03) and Cb (r = 0.53, p = 0.04) were correlated positively with LH concentrations stimulated by the gonadotropin-releasing hormone agonist. Compared to the normal puberty control, no significant difference in GM volume was found. Conclusions: This study showed the overall brain volumetric differences between ICPP girls and age-matched controls using voxel-based morphometric analysis, and further showed the correlation between brain volume and the sex hormone in ICPP. Through a comparison between the two groups, the cerebral development pattern of ICPP is similar to that of normal puberty, and these local differences in cerebral volume may affect social and congenital changes. These findings will be useful for understanding the neuroanatomical mechanisms on the specific morphological variations associated with ICPP.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jing Li ◽  
Chao Ma ◽  
Yukun Chen ◽  
Caixia Fu ◽  
Xinrui Wang ◽  
...  

PurposeTo investigate the feasibility of a fast liver magnetic resonance imaging (MRI) protocol for lesion detection in adults using 3.0-T MRI.MethodsA fast liver MRI exam protocol was proposed. The protocol included motion-resistant coronal T2-w sequence, axial T2-w fast spin echo sequence with fat suppression, axial in-op phase gradient recalled echo (GRE) T1, axial diffusion weighted imaging (DWI), and axial contrast-enhanced T1 sequences. To evaluate the diagnostic capacity of the proposed protocol, 31 consecutive patients (20 males and 11 females; mean age, 53.2 years) underwent a liver MRI exam with conventional sequences, including the proposed protocol as a subset. Images from the conventional protocol and extracted abbreviated protocol were independently read, and the diagnostic concordance rate was assessed for each patient. The concordance analysis is presented as the proportion of concordant cases between the two protocols.ResultsThe net measurement time of the fast liver MRI protocol without adjustment and waiting time were 4 min and 28 s. In the 31 patients included in this study, 139 suspicious findings were found from both the conventional liver MR protocol and the fast liver MRI protocol. The diagnostic concordance rate was 96.4%.ConclusionsThe fast liver MRI protocol is feasible at 3.0-T, with a shorter exam time and high diagnostic concordance compared to the conventional liver MRI workflow.


Author(s):  
Konstanze Viktoria Guggenberger ◽  
Giulia Dalla Torre ◽  
Ute Ludwig ◽  
Patrick Vogel ◽  
Andreas Max Weng ◽  
...  

Abstract Objectives Vessel wall enhancement (VWE) may be commonly seen on MRI images of asymptomatic subjects. This study aimed to characterize the VWE of the proximal internal carotid (ICA) and vertebral arteries (VA) in a non-vasculitic elderly patient cohort. Methods Cranial MRI scans at 3 Tesla were performed in 43 patients (aged ≥ 50 years) with known malignancy for exclusion of cerebral metastases. For vessel wall imaging (VWI), a high-resolution compressed-sensing black-blood 3D T1-weighted fast (turbo) spin echo sequence (T1 CS-SPACE prototype) was applied post gadolinium with an isotropic resolution of 0.55 mm. Bilateral proximal intradural ICA and VA segments were evaluated for presence, morphology, and longitudinal extension of VWE. Results Concentric VWE of the proximal intradural ICA was found in 13 (30%) patients, and of the proximal intradural VA in 39 (91%) patients. Mean longitudinal extension of VWE after dural entry was 13 mm in the VA and 2 mm in the ICA. In 14 of 39 patients (36%) with proximal intradural VWE, morphology of VWE was suggestive of the mere presence of vasa vasorum. In 25 patients (64 %), morphology indicated atherosclerotic lesions in addition to vasa vasorum. Conclusions Vasa vasorum may account for concentric VWE within the proximal 2 mm of the ICA and 13 mm of the VA after dural entry in elderly subjects. Concentric VWE in these locations should not be confused with large artery vasculitis. Distal to these segments, VWE may be more likely related to pathologic conditions such as vasculitis. Key Points • Vasa vasorum may account for concentric VWE within the proximal 2 mm of the ICA and 13 mm of the VA after dural entry in non-vasculitic elderly people. • Concentric enhancement within the proximal 2 mm of the intradural ICA and within the proximal 13 mm of the intradural VA portions should not be misinterpreted as vasculitis. • Distal of this, VWE is likely related to pathologic conditions, in case of concentric VWE suggestive of vasculitis.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lei Zhang ◽  
Yanjie Zhu ◽  
Yulong Qi ◽  
Liwen Wan ◽  
Lijie Ren ◽  
...  

BackgroundT2-weighted (T2w) intracranial vessel wall imaging (IVWI) provides good contrast to differentiate intracranial vasculopathies and discriminate various important plaque components. However, the strong cerebrospinal fluid (CSF) signal in T2w images interferes with depicting the intracranial vessel wall. In this study, we propose a T2-prepared sequence for whole-brain IVWI at 3T with CSF suppression.MethodsA preparation module that combines T2 preparation and inversion recovery (T2IR) was used to suppress the CSF signal and was incorporated into the commercial three-dimensional (3D) turbo spin echo sequence-Sampling Perfection with Application optimized Contrast using different flip angle Evolution (SPACE). This new technique (hereafter called T2IR-SPACE) was evaluated on nine healthy volunteers and compared with two other commonly used 3D T2-weighted sequences: T2w-SPACE and FLAIR-SPACE (FLAIR: fluid-attenuated inversion recovery). The signal-to-noise ratios (SNRs) of the vessel wall (VW) and CSF and contrast-to-noise ratios (CNRs) between them were measured and compared among these three T2-weighted sequences. Subjective wall visualization of the three T2-weighted sequences was scored blindly and independently by two radiologists using a four-point scale followed by inter-rater reproducibility analysis. A pilot study of four stroke patients was performed to preliminarily evaluate the diagnostic value of this new sequence, which was compared with two conventional T2-weighted sequences.ResultsT2IR-SPACE had the highest CNR (11.01 ± 6.75) compared with FLAIR-SPACE (4.49 ± 3.15; p &lt; 0.001) and T2w-SPACE (−56.16 ± 18.58; p &lt; 0.001). The subjective wall visualization score of T2IR-SPACE was higher than those of FLAIR-SPACE and T2w-SPACE (T2IR-SPACE: 2.35 ± 0.59; FLAIR-SPACE: 0.52 ± 0.54; T2w-SPACE: 1.67 ± 0.58); the two radiologists’ scores showed excellent agreement (ICC = 0.883).ConclusionThe T2IR preparation module markedly suppressed the CSF signal without much SNR loss of the other tissues (i.e., vessel wall, white matter, and gray matter) compared with the IR pulse. Our results suggest that T2IR-SPACE is a potential alternative T2-weighted sequence for assessing intracranial vascular diseases.


2021 ◽  
Author(s):  
Murat Baykara ◽  
Sema Baykara

Abstract In this study, it was aimed to evaluate the dorsal striatum nuclei of patients diagnosed with Functional Neurological Disorder by tissue analysis method from magnetic resonance imaging images and to compare them with healthy controls. Study groups consisted of 20 female patients and 20 healthy women. The brains of patients and controls were scanned for high-resolution images with a 1.5 T scanner using the sagittal plane and 3D spiral fast spin echo sequence. Using the texture analysis method, mean, standard deviation, minimum, maximum, median, variance, entropy, size %L, size %U, size %M, kurtosis, skewness and homogeneity values of the dorsal striatum nuclei were calculated from the images. The data were compared with comparison tests according to Kolmogorov-Smirnov test results. There was no statistically significant difference between paired regions in terms of texture analysis findings in the cross-sectional images of the participants. In patients, mean, standard deviation, minimum, maximum, median, variance and entropy values for the putamen nucleus, and mean, standard deviation, minimum, maximum, median, variance, entropy and kurtosis values for the caudate nucleus were found significantly higher than controls. Additional receiver operating characteristic curve and logistic regression analyzes were performed. The implications of the results of the study are that there are significant microstructural changes in the dorsal striatum nuclei of patients and their reflection on brain images. Texture analysis is a useful technique to show tissue changes in the dorsal striatum of patients using images. It is highly recommended to use tissue analysis to identify and evaluate potentially affected areas of the brain in new studies.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Nico Sollmann ◽  
Charlotte Rüther ◽  
Simon Schön ◽  
Claus Zimmer ◽  
Thomas Baum ◽  
...  

Abstract Background Magnetic resonance imaging (MRI) is the modality of choice for evaluating soft tissue damage along the spine in the emergency setting, yet access and fast protocol availability are limited. We assessed the performance of a sagittal T2-weighted DIXON turbo spin-echo sequence and investigated whether additional standard sagittal T1-weighted sequences are necessary in suspected spinal fluid collections/bleedings. Methods Seventy-four patients aged 62.9 ± 19.3 years (mean ± standard deviation) with MRI including a sagittal T2-weighted DIXON sequence and a T1-weighted sequence were retrospectively included. Thirty-four patients (45.9%) showed a spinal fluid collection/bleeding. Two layouts (layout 1: fat-only and water-only and in-phase images of the DIXON sequence and T1-weighted images; layout 2: fat-only and water-only and in-phase images of the DIXON sequence) were evaluated by three readers (R1, R2, and R3) concerning presence of spinal fluid collections/bleedings and diagnostic confidence from 1 (very low confidence) to 5 (very high confidence). χ2 and κ statistics were used. Results There was no difference in detecting spinal fluid collections/bleedings between the layouts (R1 and R2 detected all, R3 missed one spinal fluid collection/bleeding in the same patient in both layouts). Confidence was high (layout 1, R1 4.26 ± 0.81, R2 4.28 ± 0.81, R3 4.32 ± 0.79; layout 2, R1 3.93 ± 0.70, R2 4.09 ± 0.86, R3 3.97 ± 0.73), with higher inter-reader agreement for layout 1 (κ 0.691–0.780) than for layout 2 (κ 0.441–0.674). Conclusions A sagittal T2-weighted DIXON sequence provides diagnostic performance similar to a protocol including standard T1-weighted sequences.


Sign in / Sign up

Export Citation Format

Share Document