magnetic catalysis
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 20)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Leila Shahkarami

AbstractWe employ an analytic solution of a magnetized Einstein–Maxwell-dilaton gravity model whose parameters have been determined so that its holographic dual has the most similarity to the confining QCD-like theories. Analyzing the total potential of a quark–antiquark pair, we are able to investigate the effect of an electric field on different phases of the background which are the thermal AdS and black hole phases. This is helpful for better understanding of the confining character and the phases of the system. We find out that the field theory dual to the black hole solution is always deconfined, as expected. However, although the thermal AdS phase generally describes the confining phase, for quark pairs parallel to B (longitudinal case) with $$B>B_{\mathrm {critical}}$$ B > B critical the response of the system mimics the deconfinement, since there is no IR wall in the bulk and the critical field $$E_s=0$$ E s = 0 , as is the case for the deconfined phase. We moreover observe that in the black hole phase with sufficiently small values of $$\mu $$ μ and in the thermal AdS phase, for both longitudinal and transverse cases, the magnetic field enhances the Schwinger effect, which can be termed as the inverse magnetic catalysis (IMC). This is deduced both from the decrease of critical electric fields and decreasing the height and width of the total potential barrier the quarks are facing with. However, by increasing $$\mu $$ μ to higher values, IMC turns into magnetic catalysis, as also observed from the diagram of the Hawking–Page phase transition temperature versus B for the background geometry.


2021 ◽  
Author(s):  
Shuyun Yang ◽  
Meng Jin ◽  
DeFu Hou

Abstract We study the mass spectra and decay process of σ and π0 mesons under strong external magnetic field. To achieve this goal, we deduce the thermodynamic potential in a two-flavor, hot and magnetized Nambu-Jona-Lasinio model. We calculate the energy gap equation through the random phase approximation (RPA). Then we use Ritus method to calculate the decay triangle diagram and self-energy in the presence of a constant magnetic field B. Our results indicate that the magnetic field has little influence on the mass of π0 at low temperatures. While for quarks and σ mesons, their mass changes obviously, which reflects the influence of magnetic catalysis (MC). The presence of magnetic field accelerates the decay of the meson while the presence of chemical potential will decrease the decay process. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.


Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 318
Author(s):  
Hideo Suganuma ◽  
Hiroki Ohata

Using the lattice gauge field theory, we study the relation among the local chiral condensate, monopoles, and color magnetic fields in quantum chromodynamics (QCD). First, we investigate idealized Abelian gauge systems of (1) a static monopole–antimonopole pair and (2) a magnetic flux without monopoles, on a four-dimensional Euclidean lattice. In these systems, we calculate the local chiral condensate on quasi-massless fermions coupled to the Abelian gauge field, and find that the chiral condensate is localized in the vicinity of the magnetic field. Second, using SU(3) lattice QCD Monte Carlo calculations, we investigate Abelian projected QCD in the maximally Abelian gauge, and find clear correlation of distribution similarity among the local chiral condensate, monopoles, and color magnetic fields in the Abelianized gauge configuration. As a statistical indicator, we measure the correlation coefficient r, and find a strong positive correlation of r≃0.8 between the local chiral condensate and an Euclidean color-magnetic quantity F in Abelian projected QCD. The correlation is also investigated for the deconfined phase in thermal QCD. As an interesting conjecture, like magnetic catalysis, the chiral condensate is locally enhanced by the strong color-magnetic field around the monopoles in QCD.


2021 ◽  
Vol 57 (7) ◽  
Author(s):  
Umut Gürsoy

AbstractWe review the holographic approach to electromagnetic phenomena in large N QCD. After a brief discussion of earlier holographic models, we concentrate on the improved holographic QCD model extended to involve magnetically induced phenomena. We explore the influence of magnetic fields on the QCD ground state, focusing on (inverse) magnetic catalysis of chiral condensate, investigate the phase diagram of the theory as a function of magnetic field, temperature and quark chemical potential, and, finally discuss effects of magnetic fields on the quark–anti-quark potential, shear viscosity, speed of sound and magnetization.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Zhen Fang ◽  
Ying-Ying Li ◽  
Yue-Liang Wu

AbstractWe studied the magnetic effects on the chiral transition and the melting properties of vector and axial-vector mesons in the improved soft-wall AdS/QCD model under a charged magnetic background, which is solved perturbatively from an Einstein–Maxwell system with a negative cosmological constant. The phase diagrams for both chiral transition and meson melting have been obtained. We show that the inverse magnetic catalysis emerged naturally in the improved soft-wall model. We also find that the magnetic field can induce meson melting, at least for the vector and axial-vector mesons, in our holographic setup.


2021 ◽  
Vol 57 (6) ◽  
Author(s):  
Jens O. Andersen

AbstractMagnetic catalysis is the enhancement of a condensate due to the presence of an external magnetic field. Magnetic catalysis at $$T=0$$ T = 0 is a robust phenomenon in low-energy theories and models of QCD as well as in lattice simulations. We review the underlying physics of magnetic catalysis from both perspectives. The quark-meson model is used as a specific example of a model that exhibits magnetic catalysis. Regularization and renormalization are discussed and we pay particular attention to a consistent and correct determination of the parameters of the Lagrangian using the on-shell renormalization scheme. A straightforward application of the quark-meson model and the NJL model leads to the prediction that the chiral transition temperature $$T_{\chi }$$ T χ is increasing as a function of the magnetic field B. This is in disagreement with lattice results, which show that $$T_{\chi }$$ T χ is a decreasing function of B, independent of the pion mass. The behavior can be understood in terms of the so-called valence and sea contributions to the quark condensate and the competition between them. We critically examine these ideas as well recent attempts to improve low-energy models using lattice input.


2021 ◽  
Vol 57 (6) ◽  
Author(s):  
Abdel Nasser Tawfik ◽  
Abdel Magied Diab

AbstractThe QCD phase-diagram is studied, at finite magnetic field. Our calculations are based on the QCD effective model, the SU(3) Polyakov linear-sigma model (PLSM), in which the chiral symmetry is integrated in the hadron phase and in the parton phase, the up-, down- and strange-quark degrees of freedom are incorporated besides the inclusion of Polyakov loop potentials in the pure gauge limit, which are motivated by various underlying QCD symmetries. The Landau quantization and the magnetic catalysis are implemented. The response of the QCD matter to an external magnetic field such as magnetization, magnetic susceptibility and permeability has been estimated. We conclude that the parton phase has higher values of magnetization, magnetic susceptibility, and permeability relative to the hadron phase. Depending on the contributions to the Landau levels, we conclude that the chiral magnetic field enhances the chiral quark condensates and hence the chiral QCD phase-diagram, i.e. the hadron-parton phase-transition likely takes place, at lower critical temperatures and chemical potentials.


Sign in / Sign up

Export Citation Format

Share Document