ribbon graphs
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Lowell Abrams ◽  
Joanna A. Ellis-Monaghan

Abstract We define a new ribbon group action on ribbon graphs that uses a semidirect product of a permutation group and the original ribbon group of Ellis-Monaghan and Moffatt to take (partial) twists and duals, or twuals, of ribbon graphs. A ribbon graph is a fixed point of this new ribbon group action if and only if it is isomorphic to one of its (partial) twuals. This extends the original ribbon group action, which only used the canonical identification of edges, to the more natural setting of self-twuality up to isomorphism. We then show that every ribbon graph has in its orbit an orientable embedded bouquet and prove that the (partial) twuality properties of these bouquets propagate through their orbits. Thus, we can determine (partial) twualities via these one vertex graphs, for which checking isomorphism reduces simply to checking dihedral group symmetries. Finally, we apply the new ribbon group action to generate all self-trial ribbon graphs on up to seven edges, in contrast with the few, large, very high-genus, self-trial regular maps found by Wilson, and by Jones and Poultin. We also show how the automorphism group of a ribbon graph yields self-dual, -petrial or –trial graphs in its orbit, and produce an infinite family of self-trial graphs that do not arise as covers or parallel connections of regular maps, thus answering a question of Jones and Poulton.


Author(s):  
Masahico Saito ◽  
Emanuele Zappala

A braided Frobenius algebra is a Frobenius algebra with a Yang–Baxter operator that commutes with the operations, that are related to diagrams of compact surfaces with boundary expressed as ribbon graphs. A heap is a ternary operation exemplified by a group with the operation [Formula: see text], that is ternary self-distributive. Hopf algebras can be endowed with the algebra version of the heap operation. Using this, we construct braided Frobenius algebras from a class of certain Hopf algebras that admit integrals and cointegrals. For these Hopf algebras we show that the heap operation induces a Yang–Baxter operator on the tensor product, which satisfies the required compatibility conditions. Diagrammatic methods are employed for proving commutativity between Yang–Baxter operators and Frobenius operations.


2021 ◽  
Vol 95 ◽  
pp. 103329
Author(s):  
Jonathan L. Gross ◽  
Toufik Mansour ◽  
Thomas W. Tucker
Keyword(s):  

2021 ◽  
Vol 180 ◽  
pp. 105428
Author(s):  
Xia Guo ◽  
Xian'an Jin ◽  
Qi Yan
Keyword(s):  

2021 ◽  
pp. 7-16
Author(s):  
Adrian Tanasa

In this chapter we present some notions of graph theory that will be useful in the rest of the book. It is worth emphasizing that graph theorists and theoretical physicists adopt, unfortunately, different terminologies. We present here both terminologies, such that a sort of dictionary between these two communities can be established. We then extend the notion of graph to that of maps (or of ribbon graphs). Moreover, graph polynomials encoding these structures (the Tutte polynomial for graphs and the Bollobás–Riordan polynomial for ribbon graphs) are presented.


Sign in / Sign up

Export Citation Format

Share Document