gene therapy application
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 3)

2021 ◽  
Vol 5 (2) ◽  
pp. 62
Author(s):  
Bunga Anggreini Sari ◽  
Azalia Talitha Zahra ◽  
Ganda Purba Tasti ◽  
Ziske Maritska

The ability to make precise adjustments to the human genome has been a goal of healing in which gene also introduces as the fundamental unit of heredity, in biomolecular technology in genetic diseases have opened new knowledge such as gene therapy. Gene therapy is a technique to repair DNA where its usage is to treat the malignancy and inherited genetic diseases. Gene therapy is a choice to the genetic cloth that goals to remedy a sickness this is hard to deal with or perhaps has no treatment. Currently, gene remedy is done in approaches to patients, specifically embryonic cells and somatic cells, every in vivo and ex vivo. Moral considerations with modification of the difficulty's cells and oversight of regulation and reagents want to be taken into consideration within the gene therapy project. Applications for using gene remedies have begun to be widely used, which include in case of maximum cancers, coronary heart disorder, infectious sicknesses, and others. Gene therapy has spread to a wide range of applications then go beyond the modification of genetic disorders. Advances in genetic modification of cancer cells and immunity and the use of viruses and bacteria to control cancer cells have resulted in many clinical trials and product developments for cancer treatment. The miracles and blessings of gene therapy are might believe, but even though they are being studied and developed now and, in the future, so that the desire for gene therapy may be even better future.Keywords: gene therapy, genetic recombination, gene therapy application


2020 ◽  
Vol 20 (5) ◽  
pp. 321-332
Author(s):  
Yunbo Liu ◽  
Xu Zhang ◽  
Lin Yang

Adeno-associated virus (AAV) is a promising vector for in vivo gene therapy because of its excellent safety profile and ability to mediate stable gene expression in human subjects. However, there are still numerous challenges that need to be resolved before this gene delivery vehicle is used in clinical applications, such as the inability of AAV to effectively target specific tissues, preexisting neutralizing antibodies in human populations, and a limited AAV packaging capacity. Over the past two decades, much genetic modification work has been performed with the AAV capsid gene, resulting in a large number of variants with modified characteristics, rendering AAV a versatile vector for more efficient gene therapy applications for different genetic diseases.


2020 ◽  
Vol 9 (8) ◽  
pp. 2577 ◽  
Author(s):  
Lucía Bañuls ◽  
Daniel Pellicer ◽  
Silvia Castillo ◽  
María Mercedes Navarro-García ◽  
María Magallón ◽  
...  

Gene therapy is an alternative therapy in many respiratory diseases with genetic origin and currently without curative treatment. After five decades of progress, many different vectors and gene editing tools for genetic engineering are now available. However, we are still a long way from achieving a safe and efficient approach to gene therapy application in clinical practice. Here, we review three of the most common rare respiratory conditions—cystic fibrosis (CF), alpha-1 antitrypsin deficiency (AATD), and primary ciliary dyskinesia (PCD)—alongside attempts to develop genetic treatment for these diseases. Since the 1990s, gene augmentation therapy has been applied in multiple clinical trials targeting CF and AATD, especially using adeno-associated viral vectors, resulting in a good safety profile but with low efficacy in protein expression. Other strategies, such as non-viral vectors and more recently gene editing tools, have also been used to address these diseases in pre-clinical studies. The first gene therapy approach in PCD was in 2009 when a lentiviral transduction was performed to restore gene expression in vitro; since then, transcription activator-like effector nucleases (TALEN) technology has also been applied in primary cell culture. Gene therapy is an encouraging alternative treatment for these respiratory diseases; however, more research is needed to ensure treatment safety and efficacy.


2019 ◽  
Author(s):  
Sandeep Chakraborty

Duchenne muscular dystrophy (DMD), a monogenic disorder characterized by progressive muscle degeneration, is one of the first diseases being targeted for therapeutic genome editing using nuclease- based methods (CRISPR/ZFN/TALEN). However, safety and persistence remains a concern. Long-term (1 year) persistence and safety of a single intravenous administration of an adeno-associated virus (AAV) and CRISPR was reported in mdx mouse model recently [1]. They reported that ‘AAV-CRISPR is immunogenic when administered to adult mice’, which can be ‘avoided by treating neonatal mice’, and also warned about ‘unintended genome and transcript alterations’. Here, the integration of the Cas9 protein in the exact two locations in the DMD gene which has been edited has been shown based on the same sequencing data (Accid:PRJNA485509). Transcriptomic data also shows Cas9 being expressed. There is an important distinction between AAV and Cas9 integration - while AAV integration can be tolerated, Cas9 integration is a huge, and unacceptable, danger. While there are use cases where the nuclease can be sent as as protein, any gene-therapy application for DMD would require delivery using AAV and the nuclease in a plasmid. So, there is no possible alleviation for this in the future, unless we are willing to accept transgenic humans as a trade-off for curing DMD.


2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Yang Yan ◽  
Hu Xu ◽  
Jiandong Wang ◽  
Xin Wu ◽  
Wei Wen ◽  
...  

Abstract The wide application of oncolytic adenovirus presents a novel therapeutic strategy for breast cancer gene therapy. Application of adenovirus alone achieves little curative effects on breast cancer. In addition, it is worth exploring the synergistic anti-tumor effect by inserting immunomodulatory factor in oncolytic adenovirus genome. By taking the advantage of the highly proliferative property of breast cancer, a novel recombinant adenovirus which could selectively kill tumor cells is established under an E2F-1 promoter. Also by carrying human Interleukin-15 (IL-15) gene, the oncolytic adenovirus exhibits an immunomodulatory effect. The present study proved that the novel oncolytic virus (SG400-E2F/IL-15) exhibits an enhanced anti-tumor activity both in vitro and in vivo, representing an experimental basis for breast cancer “virus-gene” therapy.


2019 ◽  
Vol 45 (07) ◽  
pp. 743-750 ◽  
Author(s):  
Gabriela G. Yamaguti-Hayakawa ◽  
Margareth C. Ozelo

AbstractHemophilia is a monogenic disease with robust clinicolaboratory correlations of severity. These attributes coupled with the availability of experimental animal models have made it an attractive model for gene therapy. The road from animal models to human clinical studies has heralded significant successes, but major issues concerning a previous immunity against adeno-associated virus and transgene optimization remain to be fully resolved. Despite significant advances in gene therapy application, many questions remain pertaining to its use in specific populations such as those with factor inhibitors, those with underlying liver disease, and pediatric patients. Here, the authors provide an update on viral vector and transgene improvements, review the results of recently published gene therapy clinical trials for hemophilia, and discuss the main challenges facing investigators in the field.


Author(s):  
Leonardo Jose Montebugnoli ◽  
Lucimara Gaziola de La Torre ◽  
Ismail Eş

The research was focused on the production of lipid based vectors for gene therapy by microfluidic devices, particularly carionic liposomes (CL), and their complexation with plasmidic DNA (pDNA). Two types of microfluidic devices were proposed to achieve the goals, a diffusion based microfluidic device (D-MD) and a caotic advection based microfluidic device (CA-MD). The research showed that the CA-MD has a better productivity of CL while maintaining good properties. In the complexation studies, the D-MD was capable of make the complexes of genetic materials and liposomes (Lipoplexes).


Sign in / Sign up

Export Citation Format

Share Document