cochlear hair cells
Recently Published Documents


TOTAL DOCUMENTS

478
(FIVE YEARS 107)

H-INDEX

54
(FIVE YEARS 7)

2021 ◽  
Vol 15 ◽  
Author(s):  
Pengcheng Xu ◽  
Longhao Wang ◽  
Hu Peng ◽  
Huihui Liu ◽  
Hongchao Liu ◽  
...  

Mutations in a number of genes encoding mitochondrial aminoacyl-tRNA synthetases lead to non-syndromic and/or syndromic sensorineural hearing loss in humans, while their cellular and physiological pathology in cochlea has rarely been investigated in vivo. In this study, we showed that histidyl-tRNA synthetase HARS2, whose deficiency is associated with Perrault syndrome 2 (PRLTS2), is robustly expressed in postnatal mouse cochlea including the outer and inner hair cells. Targeted knockout of Hars2 in mouse hair cells resulted in delayed onset (P30), rapidly progressive hearing loss similar to the PRLTS2 hearing phenotype. Significant hair cell loss was observed starting from P45 following elevated reactive oxygen species (ROS) level and activated mitochondrial apoptotic pathway. Despite of normal ribbon synapse formation, whole-cell patch clamp of the inner hair cells revealed reduced calcium influx and compromised sustained synaptic exocytosis prior to the hair cell loss at P30, consistent with the decreased supra-threshold wave I amplitudes of the auditory brainstem response. Starting from P14, increasing proportion of morphologically abnormal mitochondria was observed by transmission electron microscope, exhibiting swelling, deformation, loss of cristae and emergence of large intrinsic vacuoles that are associated with mitochondrial dysfunction. Though the mitochondrial abnormalities are more prominent in inner hair cells, it is the outer hair cells suffering more severe cell loss. Taken together, our results suggest that conditional knockout of Hars2 in mouse cochlear hair cells leads to accumulating mitochondrial dysfunction and ROS stress, triggers progressive hearing loss highlighted by hair cell synaptopathy and apoptosis, and is differentially perceived by inner and outer hair cells.


2021 ◽  
Vol 2021 ◽  
pp. 1-2
Author(s):  
Zhiwei Zheng ◽  
Dongmei Tang ◽  
Liping Zhao ◽  
Wen Li ◽  
Jinghong Han ◽  
...  


2021 ◽  
Vol 15 ◽  
Author(s):  
Marco Manca ◽  
Piece Yen ◽  
Paolo Spaiardi ◽  
Giancarlo Russo ◽  
Roberta Giunta ◽  
...  

Signal transmission by sensory auditory and vestibular hair cells relies upon Ca2+-dependent exocytosis of glutamate. The Ca2+ current in mammalian inner ear hair cells is predominantly carried through CaV1.3 voltage-gated Ca2+ channels. Despite this, CaV1.3 deficient mice (CaV1.3–/–) are deaf but do not show any obvious vestibular phenotype. Here, we compared the Ca2+ current (ICa) in auditory and vestibular hair cells from wild-type and CaV1.3–/– mice, to assess whether differences in the size of the residual ICa could explain, at least in part, the two phenotypes. Using 5 mM extracellular Ca2+ and near-body temperature conditions, we investigated the cochlear primary sensory receptors inner hair cells (IHCs) and both type I and type II hair cells of the semicircular canals. We found that the residual ICa in both auditory and vestibular hair cells from CaV1.3–/– mice was less than 20% (12–19%, depending on the hair cell type and age investigated) compared to controls, indicating a comparable expression of CaV1.3 Ca2+ channels in both sensory organs. We also showed that, different from IHCs, type I and type II hair cells from CaV1.3–/– mice were able to acquire the adult-like K+ current profile in their basolateral membrane. Intercellular K+ accumulation was still present in CaV1.3–/– mice during IK,L activation, suggesting that the K+-based, non-exocytotic, afferent transmission is still functional in these mice. This non-vesicular mechanism might contribute to the apparent normal vestibular functions in CaV1.3–/– mice.


2021 ◽  
Author(s):  
Muhammad T. Rahman ◽  
Erin M. Bailey ◽  
Benjamin M. Gansemer ◽  
Andrew Pieper ◽  
J. Robert Manak ◽  
...  

AbstractSpiral ganglion neurons (SGNs) relay auditory information from cochlear hair cells to the central nervous system. After hair cells are destroyed by aminoglycoside antibiotics, SGNs gradually die. However, the reasons for this cochlear neurodegeneration are unclear. We used microarray gene expression profiling to assess transcriptomic changes in the spiral ganglia of kanamycin-deafened and age-matched control rats and found that many of the genes upregulated after deafening are associated with immune/inflammatory responses. In support of this, we observed increased numbers of macrophages in the spiral ganglion of deafened rats. We also found, via CD68 immunoreactivity, an increase in activated macrophages after deafening. An increase in CD68-associated nuclei was observed by postnatal day 23, a time before significant SGN degeneration is observed. Finally, we show that the immunosuppressive drugs dexamethasone and ibuprofen, as well as the NAD salvage pathway activator P7C3, provide at least some neuroprotection post-deafening. Ibuprofen and dexamethasone also decreased the degree of macrophage activation. These results suggest that activated macrophages specifically, and perhaps a more general neuroinflammatory response, are actively contributing to SGN degeneration after hair cell loss.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260443
Author(s):  
Yushi Hayashi ◽  
Hidenori Suzuki ◽  
Wataru Nakajima ◽  
Ikuno Uehara ◽  
Atsuko Tanimura ◽  
...  

Although sensorineural hearing loss (SHL) is relatively common, its cause has not been identified in most cases. Previous studies have suggested that viral infection is a major cause of SHL, especially sudden SHL, but the system that protects against pathogens in the inner ear, which is isolated by the blood-labyrinthine barrier, remains poorly understood. We recently showed that, as audiosensory receptor cells, cochlear hair cells (HCs) are protected by surrounding accessory supporting cells (SCs) and greater epithelial ridge (GER or Kölliker’s organ) cells (GERCs) against viral infections. Here, we found that virus-infected SCs and GERCs induce HC death via production of the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Notably, the HCs expressed the TRAIL death receptors (DR) DR4 and DR5, and virus-induced HC death was suppressed by TRAIL-neutralizing antibodies. TRAIL-induced HC death was not caused by apoptosis, and was inhibited by necroptosis inhibitors. Moreover, corticosteroids, the only effective drug for SHL, inhibited the virus-induced transformation of SCs and GERCs into macrophage-like cells and HC death, while macrophage depletion also inhibited virus-induced HC death. These results reveal a novel mechanism underlying virus-induced HC death in the cochlear sensory epithelium and suggest a possible target for preventing virus-induced SHL.


Author(s):  
Wenqi Liang ◽  
Chunli Zhao ◽  
Zhongrui Chen ◽  
Zijing Yang ◽  
Ke Liu ◽  
...  

Mitochondrial oxidative stress is involved in hair cell damage caused by noise-induced hearing loss (NIHL). Sirtuin-3 (SIRT3) plays an important role in hair cell survival by regulating mitochondrial function; however, the role of SIRT3 in NIHL is unknown. In this study, we used 3-TYP to inhibit SIRT3 and found that this inhibition aggravated oxidative damage in the hair cells of mice with NIHL. Moreover, 3-TYP reduced the enzymatic activity and deacetylation levels of superoxide dismutase 2 (SOD2). Subsequently, we administered adeno-associated virus-SIRT3 to the posterior semicircular canals and found that SIRT3 overexpression significantly attenuated hair cell injury and that this protective effect of SIRT3 could be blocked by 2-methoxyestradiol, a SOD2 inhibitor. These findings suggest that insufficient SIRT3/SOD2 signaling leads to mitochondrial oxidative damage resulting in hair cell injury in NIHL. Thus, ameliorating noise-induced mitochondrial redox imbalance by intervening in the SIRT3/SOD2 signaling pathway may be a new therapeutic target for hair cell injury.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuyong Kang ◽  
Nengheng Zheng ◽  
Qinglin Meng

The cochlea plays a key role in the transmission from acoustic vibration to neural stimulation upon which the brain perceives the sound. A cochlear implant (CI) is an auditory prosthesis to replace the damaged cochlear hair cells to achieve acoustic-to-neural conversion. However, the CI is a very coarse bionic imitation of the normal cochlea. The highly resolved time-frequency-intensity information transmitted by the normal cochlea, which is vital to high-quality auditory perception such as speech perception in challenging environments, cannot be guaranteed by CIs. Although CI recipients with state-of-the-art commercial CI devices achieve good speech perception in quiet backgrounds, they usually suffer from poor speech perception in noisy environments. Therefore, noise suppression or speech enhancement (SE) is one of the most important technologies for CI. In this study, we introduce recent progress in deep learning (DL), mostly neural networks (NN)-based SE front ends to CI, and discuss how the hearing properties of the CI recipients could be utilized to optimize the DL-based SE. In particular, different loss functions are introduced to supervise the NN training, and a set of objective and subjective experiments is presented. Results verify that the CI recipients are more sensitive to the residual noise than the SE-induced speech distortion, which has been common knowledge in CI research. Furthermore, speech reception threshold (SRT) in noise tests demonstrates that the intelligibility of the denoised speech can be significantly improved when the NN is trained with a loss function bias to more noise suppression than that with equal attention on noise residue and speech distortion.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Li ◽  
Myung-Whan Suh ◽  
Seung Ha Oh

Clinically there is no effective method to prevent drug induced hearing loss in patients undergoing chemotherapy and anti-tuberculosis therapy. In this study, we developed an intratympanic (IT) local drug delivery vehicle featuring hyaluronic acid-based dual viscosity mixture encapsulation of dexamethasone (D), named dual-vehicle + D, and assessed its protective effect in ototoxic hearing loss. We assessed the residence time, biocompatibility, and treatment outcome of the novel vehicle compared with the current standard of care vehicle (saline) and control conditions. The hearing threshold and hair cell count were significantly better in the dual-vehicle + D group compared to the other two groups. The final hearing benefit in the dual-vehicle group was approximately 25–35 dB, which is significant from a clinical point of view. Morphologic evaluation of the cochlear hair cells also supported this finding. Due to the high viscosity and adhesive property of the vehicle, the residence time of the vehicle was 49 days in the dual-vehicle + D group, whereas it was less than 24 h in the saline + D group. There was no sign of inflammation or infection in all the animals. From this study we were able to confirm that dual viscosity mixture vehicle for IT D delivery can effectively block ototoxic hearing loss.


Sign in / Sign up

Export Citation Format

Share Document