auditory hair cells
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 49)

H-INDEX

43
(FIVE YEARS 5)

Author(s):  
Jing Liu ◽  
Shengxiong Wang ◽  
Yan Lu ◽  
Haoyu Wang ◽  
Fangfang Wang ◽  
...  

Author(s):  
Xiaomin Tang ◽  
Yuxuan Sun ◽  
Chenyu Xu ◽  
Xiaotao Guo ◽  
Jiaqiang Sun ◽  
...  

Caffeine is being increasingly used in daily life, such as in drinks, cosmetics, and medicine. Caffeine is known as a mild stimulant of the central nervous system, which is also closely related to neurologic disease. However, it is unknown whether caffeine causes hearing loss, and there is great interest in determining the effect of caffeine in cochlear hair cells. First, we explored the difference in auditory brainstem response (ABR), organ of Corti, stria vascularis, and spiral ganglion neurons between the control and caffeine-treated groups of C57BL/6 mice. RNA sequencing was conducted to profile mRNA expression differences in the cochlea of control and caffeine-treated mice. A CCK-8 assay was used to evaluate the approximate concentration of caffeine. Flow cytometry, TUNEL assay, immunocytochemistry, qRT-PCR, and Western blotting were performed to detect the effects of SGK1 in HEI-OC1 cells and basilar membranes. In vivo research showed that 120 mg/ kg caffeine injection caused hearing loss by damaging the organ of Corti, stria vascularis, and spiral ganglion neurons. RNA-seq results suggested that SGK1 might play a vital role in ototoxicity. To confirm our observations in vitro, we used the HEI-OC1 cell line, a cochlear hair cell-like cell line, to investigate the role of caffeine in hearing loss. The results of flow cytometry, TUNEL assay, immunocytochemistry, qRT-PCR, and Western blotting showed that caffeine caused autophagy and apoptosis via SGK1 pathway. We verified the interaction between SGK1 and HIF-1α by co-IP. To confirm the role of SGK1 and HIF-1α, GSK650394 was used as an inhibitor of SGK1 and CoCl2 was used as an inducer of HIF-1α. Western blot analysis suggested that GSK650394 and CoCl2 relieved the caffeine-induced apoptosis and autophagy. Together, these results indicated that caffeine induces autophagy and apoptosis in auditory hair cells via the SGK1/HIF-1α pathway, suggesting that caffeine may cause hearing loss. Additionally, our findings provided new insights into ototoxic drugs, demonstrating that SGK1 and its downstream pathways may be potential therapeutic targets for hearing research at the molecular level.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
John Lee ◽  
Kosuke Kosuke Kawai ◽  
Jeffrey R Holt ◽  
Gwenaelle Geleoc

Acoustic overexposure and aging can damage auditory synapses in the inner ear by a process known as synaptopathy. These insults may also damage hair bundles and the sensory transduction apparatus in auditory hair cells. However, a connection between sensory transduction and synaptopathy has not been established. To evaluate potential contributions of sensory transduction to synapse formation and development, we assessed inner hair cell synapses in several genetic models of dysfunctional sensory transduction, including mice lacking Transmembrane Channel-like (Tmc) 1, Tmc2 or both, in Beethoven mice which carry a dominant Tmc1 mutation and in Spinner mice which carry a recessive mutation in Transmembrane inner ear (Tmie). Our analyses reveal loss of synapses in the absence of sensory transduction and preservation of synapses in Tmc1-null mice following restoration of sensory transduction via Tmc1 gene therapy. These results provide insight into the requirement of sensory transduction for hair cell synapse development and maturation.


2021 ◽  
Vol 11 (4) ◽  
pp. 582-593
Author(s):  
Ugo Sorrentino ◽  
Chiara Piccolo ◽  
Chiara Rigon ◽  
Valeria Brasson ◽  
Eva Trevisson ◽  
...  

Since the early 2000s, an ever-increasing subset of missense pathogenic variants in the ACTG1 gene has been associated with an autosomal-dominant, progressive, typically post-lingual non-syndromic hearing loss (NSHL) condition designed as DFNA20/26. ACTG1 gene encodes gamma actin, the predominant actin protein in the cytoskeleton of auditory hair cells; its normal expression and function are essential for the stereocilia maintenance. Different gain-of-function pathogenic variants of ACTG1 have been associated with two major phenotypes: DFNA20/26 and Baraitser–Winter syndrome, a multiple congenital anomaly disorder. Here, we report a novel ACTG1 variant [c.625G>A (p. Val209Met)] in an adult patient with moderate-severe NSHL characterized by a downsloping audiogram. The patient, who had a clinical history of slowly progressive NSHL and tinnitus, was referred to our laboratory for the analysis of a large panel of NSHL-associated genes by next generation sequencing. An extensive review of previously reported ACTG1 variants and their associated phenotypes was also performed.


2021 ◽  
Author(s):  
Christopher J Buswinka ◽  
David B Rosenberg ◽  
Artur A Indzhykulian

Auditory hair cells, the whole length of the cochlea, are routinely visualized using light microscopy techniques. It is common, therefore, for one to collect more data than is practical to analyze manually. There are currently no widely accepted tools for unsupervised, unbiased, and comprehensive analysis of cells in an entire cochlea. This represents a stark gap between image-based data and other tests of cochlear function. To close this gap, we present a machine learning-based hair cell analysis toolbox, for the analysis of whole cochleae, imaged with confocal microscopy. The software presented here allows the automation of common image analysis tasks such as counting hair cells, determining their best frequency, as well as quantifying single cell immunofluorescence intensities along the entire cochlear coil. We hope these automated tools will remove a considerable barrier in cochlear image analysis, allowing for more informative and less selective data analysis practices.


2021 ◽  
Author(s):  
Francesco Gianoli ◽  
Brenna Hogan ◽  
&Eacutemilien Dilly ◽  
Thomas Risler ◽  
Andrei S Kozlov

Since the pioneering work of Thomas Gold published in 1948, it has been known that we owe our sensitive sense of hearing to a process in the inner ear that can amplify incident sounds on a cycle-by-cycle basis. Termed the active process, it uses energy to counteract the viscous dissipation associated with sound-evoked vibrations of the ear's mechanotransduction apparatus. Despite its importance, the mechanism of the active process and the proximate source of energy that powers it have remained elusive—especially at the high frequencies characteristic of mammalian hearing. This is partly due to our insufficient understanding of the mechanotransduction process in hair cells, the sensory receptors and amplifiers of the inner ear. It has previously been proposed that a cyclical binding of Ca2+ ions to individual mechanotransduction channels could power the active process. That model, however, relied on tailored reaction rates that structurally forced the direction of the cycle. Here, we ground our study on our previous model of hair-cell mechanotransduction, which relied on the cooperative gating of pairs of channels, and incorporate into it the cyclical binding of Ca2+ ions. With a single binding site per channel and reaction rates drawn from thermodynamic principles, our model shows that hair cells behave as nonlinear oscillators that exhibit Hopf bifurcations, dynamical instabilities long understood to be signatures of the active process. Using realistic parameter values, we find bifurcations at frequencies in the kilohertz range with physiological Ca2+ concentrations. In contrast to the myosin-based mechanism, responsible for low-frequency relaxation oscillations in the vestibular hair cells of amphibians, the current model relies on the electrochemical gradient of Ca2+ as the only energy source for the active process and on the relative motion of cooperative channels within the stereociliary membrane as the single mechanical driver. Equipped with these two mechanisms, a hair bundle proves capable of operating at frequencies in the kilohertz range, characteristic of mammalian hearing.


2021 ◽  
Vol 15 ◽  
Author(s):  
Basile Tarchini

Sensory hair cells detect mechanical stimuli with their hair bundle, an asymmetrical brush of actin-based membrane protrusions, or stereocilia. At the single cell level, stereocilia are organized in rows of graded heights that confer the hair bundle with intrinsic directional sensitivity. At the organ level, each hair cell is precisely oriented so that its intrinsic directional sensitivity matches the direction of mechanical stimuli reaching the sensory epithelium. Coordinated orientation among neighboring hair cells usually ensures the delivery of a coherent local group response. Accordingly, hair cell orientation is locally uniform in the auditory and vestibular cristae epithelia in birds and mammals. However, an exception to this rule is found in the vestibular macular organs, and in fish lateral line neuromasts, where two hair cell populations show opposing orientations. This mirror-image hair cell organization confers bidirectional sensitivity at the organ level. Here I review our current understanding of the molecular machinery that produces mirror-image organization through a regional reversal of hair cell orientation. Interestingly, recent evidence suggests that auditory hair cells adopt their normal uniform orientation through a global reversal mechanism similar to the one at work regionally in macular and neuromast organs. Macular and auditory organs thus appear to be patterned more similarly than previously appreciated during inner ear development.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yujin Li ◽  
Ao Li ◽  
Chao Wang ◽  
Xin Jin ◽  
Yaoting Zhang ◽  
...  

Neomycin is a common ototoxic aminoglycoside antibiotic that causes sensory hearing disorders worldwide, and monosialotetrahexosylganglioside (GM1) is reported to have antioxidant effects that protect various cells. However, little is known about the effect of GM1 on neomycin-induced hair cell (HC) ototoxic damage and related mechanism. In this study, cochlear HC-like HEI-OC-1 cells along with whole-organ explant cultures were used to establish an in vitro neomycin-induced HC damage model, and then the apoptosis rate, the balance of oxidative and antioxidant gene expression, reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were measured. GM1 could maintain the balance of oxidative and antioxidant gene expression, inhibit the accumulation of ROS and proapoptotic gene expression, promoted antioxidant gene expression, and reduce apoptosis after neomycin exposure in HEI-OC-1 cells and cultured cochlear HCs. These results suggested that GM1 could reduce ROS aggregation, maintain mitochondrial function, and improve HC viability in the presence of neomycin, possibly through mitochondrial antioxidation. Hence, GM1 may have potential clinical value in protecting against aminoglycoside-induced HC injury.


2021 ◽  
Author(s):  
Angela Ballesteros ◽  
Kenton J Swartz

The mechanoelectrical transduction (MET) channel complex of auditory hair cells converts sound into electrical signals, allowing us to hear. After decades of research, the transmembrane-like channel 1 and 2 (TMC1 and TMC2) have been recently identified as pore-forming subunits of the MET channels, but the molecular peculiarity that differentiates these two proteins and makes TMC1 essential for hearing remains elusive. Here, we show that TMC1, but not TMC2, is essential for membrane remodeling triggered by a decrease in intracellular calcium concentration. We demonstrate that inhibition of MET channels or buffering of intracellular calcium lead to pronounced phosphatidylserine externalization, membrane blebbing and ectosome release at the hair cell sensory organelle, culminating in the loss of TMC1 protein. Moreover, three TMC1 deafness-causing mutations cause constitutive phosphatidylserine externalization that correlates with the deafness phenotype, suggesting that the mechanisms of hearing loss involve alterations in membrane homeostasis.


Sign in / Sign up

Export Citation Format

Share Document