Abstract
Fetal cell-derived exosomes promote inflammation in uterine and cervical cells to promote labor and delivery. However, the effect of maternal exosomes on fetal cells is still not known. We tested the hypothesis that cervical cells exposed to infectious and oxidative stress (OS) signals produce exosomes that can induce inflammation at the feto-maternal interface (FMi). Exosomes isolated from medium samples from human ectocervical epithelial cells (Ecto), endocervical epithelial cells (Endo), and cervical stromal cells (Stroma) in normal cell culture (control) or exposed to infection or OS conditions were characterized based on morphology, size, quantity, expression of tetraspanin markers, and cargo proteins. Human decidual, chorion trophoblast (CTC), chorion mesenchymal (CMC), amnion mesenchymal (AMC), and amnion epithelial cells (AEC) were treated with control, LPS-, or OS-treated cervical exosomes. ELISA for pro-inflammatory cytokines and progesterone was done to determine the recipient cells’ inflammatory status. Ecto, endo, and stroma released ∼110 nm, cup-shaped exosomes. LPS and OS treatments did not affect exosome size; however, OS significantly increased the number of exosomes released by all cervical cells. Cervical exosomes were detected by fluorescence microscopy in each target cell after treatment. Exosomes from LPS- and CSE-treated cervical cells increased the inflammatory cytokine levels in the decidual cells, CMC, AMC, and AEC. LPS-treated stromal cell exosomes increased IL-6, IL-8, and progesterone in CTC. In conclusion, infection and OS can produce inflammatory cargo-enriched cervical exosomes that can destabilize FMi cells. However, the refractoriness of CTC to exosome treatments suggests a barrier function of the chorion at the FMi.