decidual cells
Recently Published Documents


TOTAL DOCUMENTS

494
(FIVE YEARS 63)

H-INDEX

44
(FIVE YEARS 4)

2022 ◽  
Vol 22 (1) ◽  
pp. 100604
Author(s):  
Violeta Castro-Leyva ◽  
Francisco Arenas-Huertero ◽  
Aurora Espejel-Núñez ◽  
Silvia Giono Cerezo ◽  
Arturo Flores-Pliego ◽  
...  
Keyword(s):  

2022 ◽  
Vol 226 (1) ◽  
pp. S748-S749
Author(s):  
Viviana de Assis ◽  
Asli Ozmen ◽  
Xiaofang Guo ◽  
Nihan Semerci-Gunay ◽  
Ozlem Guzeloglu-Kayisli ◽  
...  
Keyword(s):  

2021 ◽  
Vol 3 ◽  
Author(s):  
Joanne Muter ◽  
Chow-Seng Kong ◽  
Jan J. Brosens

In each menstrual cycle, the endometrium becomes receptive to embryo implantation while preparing for tissue breakdown and repair. Both pregnancy and menstruation are dependent on spontaneous decidualization of endometrial stromal cells, a progesterone-dependent process that follows rapid, oestrogen-dependent proliferation. During the implantation window, stromal cells mount an acute stress response, which leads to the emergence of functionally distinct decidual subsets, reflecting the level of replication stress incurred during the preceding proliferative phase. Progesterone-dependent, anti-inflammatory decidual cells (DeC) form a robust matrix that accommodates the conceptus whereas pro-inflammatory, progesterone-resistant stressed and senescent decidual cells (senDeC) control tissue remodelling and breakdown. To execute these functions, each decidual subset engages innate immune cells: DeC partner with uterine natural killer (uNK) cells to eliminate senDeC, while senDeC co-opt neutrophils and macrophages to assist with tissue breakdown and repair. Thus, successful transformation of cycling endometrium into the decidua of pregnancy not only requires continuous progesterone signalling but dominance of DeC over senDeC, aided by recruitment and differentiation of circulating NK cells and bone marrow-derived decidual progenitors. We discuss how the frequency of cycles resulting in imbalanced decidual subpopulations may determine the recurrence risk of miscarriage and highlight emerging therapeutic strategies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Esha Ganguly ◽  
Ananth Kumar Kammala ◽  
Meagan Benson ◽  
Lauren S. Richardson ◽  
Arum Han ◽  
...  

Current intervention strategies have not been successful in reducing the risks of adverse pregnancy complications nor maternal and fetal morbidities associated with pregnancy complications. Improving pregnancy and neonatal outcomes requires a better understanding of drug transport mechanisms at the feto-maternal interfaces, specifically the placenta and fetal membrane (FM). The role of several solute carrier uptake transporter proteins (TPs), such as the organic anion transporting polypeptide 2B1 (OATP2B1) in transporting drug across the placenta, is well-established. However, the mechanistic role of FMs in this drug transport has not yet been elucidated. We hypothesize that human FMs express OATP2B1 and functions as an alternate gatekeeper for drug transport at the feto-maternal interface. We determined the expression of OATP2B1 in term, not-in-labor, FM tissues and human FM cells [amnion epithelial cell (AEC), chorion trophoblast cell (CTC), and mesenchymal cells] using western blot analyses and their localization using immunohistochemistry. Changes in OATP2B1 expression was determined for up to 48 h after stimulation with cigarette smoke extract (CSE), an inducer of oxidative stress. The functional role of OATP2B1 was determined by flow cytometry using a zombie violet dye substrate assay. After OATP2B1 gene silencing, its functional relevance in drug transport through the feto-maternal interface was tested using a recently developed feto-maternal interface organ-on-a-chip (OOC) system that contained both FM and maternal decidual cells. Propagation of a drug (Rosuvastatin, that can be transported by OATP2B1) within the feto-maternal interface OOC system was determined by mass spectrometry. FMs express OATP2B1 in the CTC and AEC layers. In FM explants, OATP2B1 expression was not impacted by oxidative stress. Uptake of the zombie violet dye within AECs and CTCs showed OATP2B1 is functionally active. Silencing OATP2B1 in CTCs reduced Rosuvastatin propagation from the decidua to the fetal AEC layer within the feto-maternal interface-OOC model. Our data suggest that TPs in FMs may function as a drug transport system at the feto-maternal interface, a function that was previously thought to be performed exclusively by the placenta. This new knowledge will help improve drug delivery testing during pregnancy and contribute to designing drug delivery strategies to treat adverse pregnancy outcomes.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Peng-Chao Wang ◽  
Si-Ting Chen ◽  
Zeng-Ming Yang

Abstract Background Decidualization is essential to the successful pregnancy in mice. The molecular mechanisms and effects of Aurora kinase A (Aurora A) remain poorly understood during pregnancy. This study is the first to investigate the expression and role of Aurora A during mouse decidualization. Methods Quantitative real time polymerase chain reaction, western blotting and in situ hybridization were used to determine the expression of Aurora A in mouse uteri. Aurora A activity was inhibited by Aurora A inhibitor to explore the role of Aurora A on decidualization via regulating the Aurora A/Stat3/Plk1/Cdk1 signaling pathway. Results Aurora A was strongly expressed at implantation sites compared with inter-implantation sites. Furthermore, Aurora A was also significantly increased in oil-induced deciduoma compared with control. Both Aurora A mRNA and protein were significantly increased under in vitro decidualization. Under in vitro decidualization, Prl8a2, a marker of mouse decidualization, was significantly decreased by TC-S 7010, an Aurora A inhibitor. Additionally, Prl8a2 was reduced by Stat3 inhibitor, Plk1 inhibitor and Cdk1 inhibitor, respectively. Moreover, the protein levels of p-Stat3, p-Plk1 and p-Cdk1 were suppressed by TC-S 7010. The protein levels of p-Stat3, p-Plk1 and p-Cdk1 were also suppressed by S3I-201, a Stat3 inhibitor). SBE 13 HCl (Plk1 inhibitor) could reduce the protein levels of p-Plk1 and p-Cdk1. Collectively, Aurora A could regulate Stat3/Plk1/Cdk1 signaling pathway. Conclusion Our study shows that Aurora A is expressed in decidual cells and should be important for mouse decidualization. Aurora A/Stat3/Plk1/Cdk1 signaling pathway may be involved in mouse decidualization.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Liman Li ◽  
Ting Feng ◽  
Weijie Zhou ◽  
Yuan Liu ◽  
Hong Li

AbstractThe critical immune effectors, including T, B, and natural killer (NK) cells, dendritic cells, and macrophages participate in regulating immune responses during pregnancy. Among these immune cells, decidual NK (dNK) cells are involved in key placental development processes at the maternal–fetal interface, such as uterine spiral artery remodeling, trophoblast invasion, and decidualization. Mechanistically, dNK cells significantly influence pregnancy outcome by secreting cytokines, chemokines, and angiogenic mediators and by their interactions with trophoblasts and other decidual cells. MicroRNAs (miRNAs) are small non-coding RNA molecules that participate in the initiation and progression of human diseases. Although the functions of circulating miRNAs in pathological mechanism has been extensively studied, the regulatory roles of miRNAs in NK cells, especially in dNK cells, have been rarely reported. In this review, we analyze the effects of miRNA regulations of dNK cell functions on the immune system during gestation. We discuss aberrant expressions of certain miRNAs in dNK cells that may lead to pathological consequences, such as recurrent pregnancy loss (RPL). Interestingly, miRNA expression patterns are also different between dNK cells and peripheral NK (pNK) cells, and pNK cells in the first- and third‐trimester of gestation. The dysregulation of miRNA plays a pivotal regulatory role in driving immune functions of dNK and pNK cells. Further understanding of the molecular mechanisms of miRNAs in dNK cells may provide new insights into the development of therapeutics to prevent pregnancy failure.


Author(s):  
Daniel J Stadtmauer ◽  
Günter P Wagner

Abstract The decidua is a hallmark of reproduction in many placental mammals. Differentiation of decidual stromal cells is known to be induced by progesterone and the cyclic AMP/protein kinase A (cAMP/PKA) pathway. Several candidates have been identified as the physiological stimulus for adenylyl cyclase activation, but their relative importance remains unclear. To bypass this uncertainty, the standard approach for in vitro experiments uses membrane-permeable cyclic AMP and progestin. We phylogenetically infer that prostaglandin E2 (PGE2) likely was the signal that ancestrally induced decidualization in conjunction with progesterone. This suggests that PGE2 and progestin should be able to activate the core gene regulatory network of decidual cells. To test this prediction we performed a genome-wide study of gene expression in human endometrial fibroblasts decidualized with PGE2 and progestin. Comparison to a cAMP-based protocol revealed shared activation of core decidual genes, and decreased induction of senescence-associated genes. Single-cell transcriptomics of PGE2-mediated decidualization revealed a distinct early activated state transitioning to a differentiated decidual state. PGE2-mediated decidualization was found to depend upon progestin-dependent induction of PGE2 receptor 2 (PTGER2) which in turn leads to PKA activation upon PGE2 stimulation. Progesterone-dependent induction of PTGER2 is absent in opossum, an outgroup taxon of placental mammals which is incapable of decidualization. Together, these findings suggest that the origin of decidualization involved the evolution of progesterone-dependent activation of the PGE2/PTGER2/PKA axis, facilitating entry into a PKA-dominant rather than AKT-dominant cellular state. We propose the use of PGE2 for in vitro decidualization as an alternative to 8-Br-cAMP.


2021 ◽  
Vol 22 (19) ◽  
pp. 10505
Author(s):  
Mikihiro Yoshie ◽  
Kazuya Kusama ◽  
Risaka Tanaka ◽  
Takanori Okubo ◽  
Junya Kojima ◽  
...  

Previous in vitro studies have suggested that calreticulin (CALR), which is responsible for the folding and quality control of glycoproteins, may be associated with decidualization. However, its precise role in regulating decidualization has not been explored in vivo. Here, we used pregnant rat models to examine endometrial CALR expression during the peri-implantation period. We also examined whether polypectomy, a procedure that could ameliorate infertility, alters the endometrial expression levels of CALR and several implantation factors in women diagnosed as infertile. In rats, uterine CALR was expressed at a high level at the implantation site, and a marked increase in CALR expression was observed in decidual cells of normal pregnancy. In addition, endometrial CALR expression was enhanced by either administration of estradiol-17β in the delayed implantation rat model or the artificial induction of decidualization in the pseudopregnant rat. In cultured stromal cells, siRNA-mediated silencing of CALR inhibited the decidual stimulus-induced expression of prolactin, decidual/trophoblast prolactin-related protein, and connexin 43. In humans, the endometrial expression levels of the mRNAs encoding CALR and the implantation-related factor insulin-like growth factor binding protein (IGFBP)-7 tended to increase after polypectomy. The strongest positive correlation between expression levels before polypectomy was observed for IGFBP-7 and CALR, and the strength of this correlation increased after the surgery. Thus, endometrial CALR may play a role in the formation of decidua, and the polypectomy of infertile patients may result in the co-operative expression of endometrial factors, including CALR, that could enhance endometrial receptivity.


2021 ◽  
Vol 118 (40) ◽  
pp. e2109252118
Author(s):  
Andrew M. Kelleher ◽  
Rohit Setlem ◽  
Françoise Dantzer ◽  
Francesco J. DeMayo ◽  
John P. Lydon ◽  
...  

Miscarriage is a common complication of pregnancy for which there are few clinical interventions. Deficiency in endometrial stromal cell decidualization is considered a major contributing factor to pregnancy loss; however, our understanding of the underlying mechanisms of decidual deficiency are incomplete. ADP ribosylation by PARP-1 and PARP-2 has been linked to physiological processes essential to successful pregnancy outcomes. Here, we report that the catalytic inhibition or genetic ablation of PARP-1 and PARP-2 in the uterus lead to pregnancy loss in mice. Notably, the absence of PARP-1 and PARP-2 resulted in increased p53 signaling and an increased population of senescent decidual cells. Molecular and histological analysis revealed that embryo attachment and the removal of the luminal epithelium are not altered in uterine Parp1, Parp2 knockout mice, but subsequent decidualization failure results in pregnancy loss. These findings provide evidence for a previously unknown function of PARP-1 and PARP-2 in mediating decidualization for successful pregnancy establishment.


Author(s):  
Ourlad Alzeus G Tantengco ◽  
Enkhtuya Radnaa ◽  
Hend Shahin ◽  
Talar Kechichian ◽  
Ramkumar Menon

Abstract Fetal cell-derived exosomes promote inflammation in uterine and cervical cells to promote labor and delivery. However, the effect of maternal exosomes on fetal cells is still not known. We tested the hypothesis that cervical cells exposed to infectious and oxidative stress (OS) signals produce exosomes that can induce inflammation at the feto-maternal interface (FMi). Exosomes isolated from medium samples from human ectocervical epithelial cells (Ecto), endocervical epithelial cells (Endo), and cervical stromal cells (Stroma) in normal cell culture (control) or exposed to infection or OS conditions were characterized based on morphology, size, quantity, expression of tetraspanin markers, and cargo proteins. Human decidual, chorion trophoblast (CTC), chorion mesenchymal (CMC), amnion mesenchymal (AMC), and amnion epithelial cells (AEC) were treated with control, LPS-, or OS-treated cervical exosomes. ELISA for pro-inflammatory cytokines and progesterone was done to determine the recipient cells’ inflammatory status. Ecto, endo, and stroma released ∼110 nm, cup-shaped exosomes. LPS and OS treatments did not affect exosome size; however, OS significantly increased the number of exosomes released by all cervical cells. Cervical exosomes were detected by fluorescence microscopy in each target cell after treatment. Exosomes from LPS- and CSE-treated cervical cells increased the inflammatory cytokine levels in the decidual cells, CMC, AMC, and AEC. LPS-treated stromal cell exosomes increased IL-6, IL-8, and progesterone in CTC. In conclusion, infection and OS can produce inflammatory cargo-enriched cervical exosomes that can destabilize FMi cells. However, the refractoriness of CTC to exosome treatments suggests a barrier function of the chorion at the FMi.


Sign in / Sign up

Export Citation Format

Share Document