kinetic predictions
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Akinola David Olugbemide ◽  
Blaž Likozar ◽  
Ana Oberlintner ◽  
Uroš Novak ◽  
Ekebafe Lawrence

Abstract In this research study, the impact of the feedstock to the inoculum (F/I) amount ratio in the dry anaerobic digestion (DAD) of Hura crepitans leaves was evaluated. Measured biogas volumes, as well as the chemical kinetic predictions for exponential, logistic and Gompertz model, depicting the agreement of the simulations over time, were also determined. From the F/I equivalents 2, 4 and 6 at 22 % of packed total solids, which were considered in analysis test procedure, the DAD digester with F/I number 4 was the most promising in terms of biogas’ production rate. Its daily methane/carbon dioxide was 690 mL, while cumulative generation productivity was greater than 2 L/sample, respectively. On the other hand, the DAD reaction with F/I contained 6, recorded the lowest related expressed primary matter of < 1 L. An associated early commencement of the organic material breakdown in all bio vessels was indicative of a good start-up phase, which is one of the challenges, often encountered in DAD process. Furthermore, applied experimental methods revealed the direct correlation phenomena between biodegradability physical constants, measured molecular CH4/CO2 synthesis and simulations. Hura crepitans being an invasive plant species makes its lignocellulosic fractions desired in terms of valorisation, as it is not competing with agricultural crop products. Modelling can, moreover, contribute to consecutive operation optimisation, scaling and integrating, also taking dynamics under consideration. As opposed to bio-refining wood residues, where individual cellulose, hemicellulose or lignin biopolymers can be attained, degradation to yield CH4 is robust, as well as compatible in combustion.


Author(s):  
Huiting Bian ◽  
Yongjin Wang ◽  
Jing Li ◽  
Jun Zhao

Cyclohexyl radicals are crucial primary intermediates in combustion of fossil and alternative fuels. They would present the inherent conformation feature, i.e. diverse conformers retained in inversion-topomerization pathways, jointly controlled by the varying radical site and specific spatial positions of alkyl side chains on “easy-distortion” cyclic ring. These conformers for one radical have different energies and thermodynamics, and are highly expected to influence their subsequent decomposition reactions in terms of energetics and kinetics. To reveal such impact, all conformational structures and their interconversion mechanisms for trans-1,2-dimethylcyclohexyl isomers were explored by employing quantum chemical calculations coupled with transition state theory. Originated from distinct conformers, all accessible transition states were explicitly identified in different reaction paths for each type of intramolecular H-transfer or β-scission, and then were carefully used in computing rate coefficients. The kinetic predictions demonstrate that the fairly speedy equilibrium among conformers would be established for one isomer via conformation before they proceed the initial decomposition over 300-2500 K. This allows thoroughly evaluating the contribution of various conformers to the kinetics for multiple paths in one reaction regarding to their thermodynamic properties. Moreover, conformational analysis elucidates that H-transfers exhibit strong structure dependence. Note that the most favorable 1,5 H-transfer is only feasible for one twist-boat with radical site in axial side chain accompanied by one isoclinal methyl group. The results for β-scissions are affected by steric energies and substituent effects remained in conformational structures. These findings facilitate to finally suggest the proper kinetic parameters for each decomposition reaction with the aim of their potential implication in kinetic modelling.


2021 ◽  
Author(s):  
Anvesh Reddy Vallapureddy ◽  
Haochuan Zhuang ◽  
Jiaqi Li ◽  
Dan DelVescovo ◽  
Christopher P. Kolodziej ◽  
...  

2020 ◽  
Vol 20 (11) ◽  
pp. 6671-6686
Author(s):  
Simon Rosanka ◽  
Giang H. T. Vu ◽  
Hue M. T. Nguyen ◽  
Tien V. Pham ◽  
Umar Javed ◽  
...  

Abstract. Isocyanic acid (HNCO) is a chemical constituent suspected to be harmful to humans if ambient concentrations exceed ∼1 ppbv. HNCO is mainly emitted by combustion processes but is also inadvertently released by NOx mitigation measures in flue gas treatments. With increasing biomass burning and more widespread usage of catalytic converters in car engines, good prediction of HNCO atmospheric levels with global models is desirable. Little is known directly about the chemical loss processes of HNCO, which limits the implementation in global Earth system models. This study aims to close this knowledge gap by combining a theoretical kinetic study on the major oxidants reacting with HNCO with a global modelling study. The potential energy surfaces of the reactions of HNCO with OH and NO3 radicals, Cl atoms, and ozone were studied using high-level CCSD(T)/CBS(DTQ)//M06-2X/aug-cc-pVTZ quantum chemical methodologies, followed by transition state theory (TST) theoretical kinetic predictions of the rate coefficients at temperatures of 200–3000 K. It was found that the reactions are all slow in atmospheric conditions, with k(300K)≤7×10-16 cm3molecule-1s-1, and that product formation occurs predominantly by H abstraction; the predictions are in good agreement with earlier experimental work, where available. The reverse reactions of NCO radicals with H2O, HNO3, and HCl, of importance mostly in combustion, were also examined briefly. The findings are implemented into the atmospheric model EMAC (ECHAM/MESSy Atmospheric Chemistry) to estimate the importance of each chemical loss process on a global scale. The EMAC predictions confirm that the gas-phase chemical loss of HNCO is a negligible process, contributing less than 1 % and leaving heterogeneous losses as the major sinks. The removal of HNCO by clouds and precipitation contributes about 10 % of the total loss, while globally dry deposition is the main sink, accounting for ∼90 %. The global simulation also shows that due to its long chemical lifetime in the free troposphere, HNCO can be efficiently transported into the UTLS by deep convection events. Daily-average mixing ratios of ground-level HNCO are found to regularly exceed 1 ppbv in regions dominated by biomass burning events, but rarely exceed levels above 10 ppt in other areas of the troposphere, though locally instantaneous toxic levels are expected.


2020 ◽  
Author(s):  
Simon Rosanka ◽  
Giang H. T. Vu ◽  
Hue M. T. Nguyen ◽  
Tien V. Pham ◽  
Umar Javed ◽  
...  

Abstract. The impact of chemical loss processes of isocyanic acid was studied by a combined theoretical and modeling study. The potential energy surfaces of the reactions of HNCO with OH and NO3 radicals, Cl atoms, and ozone, were studied using high-level CCSD(T)/CBS(DTQ)//M06-2X/aug-cc-pVTZ quantum chemical methodologies, followed by TST theoretical kinetic predictions of the rate coefficients at temperatures of 200–3000 K. It was found that the reactions are all slow in atmospheric conditions, with k(300 K) ≤ 7 × 10−16 cm3 molecule−1 s−1; the predictions are in good agreement with earlier experimental work, where available. The reverse reactions of NCO radicals, of importance mostly in combustion, were also examined briefly. The global model confirms that gas phase chemical loss of HNCO is a negligible process, contributing less than 1 %. Removal of HNCO by clouds and precipitation is a larger sink, contributing for about 10 % of the total loss, while globally dry deposition is the main sink, accounting for ~ 90 %. The global simulation also shows that due to its long chemical lifetime in the free troposphere, HNCO can be efficiently transported into the UTLS by deep convection events. Average daily concentrations of HNCO are found to rarely exceed levels considered potentially toxic, though locally instantaneous toxic levels are expected.the free troposphere, HNCO can be efficiently transported into the UTLS by deep convection events. Average daily concentrations of HNCO are found to rarely exceed levels considered potentially toxic, though locally instantaneous toxic levels are expected.


2020 ◽  
Vol 117 (6) ◽  
pp. 3307-3318 ◽  
Author(s):  
Meghan C. Ferrall-Fairbanks ◽  
Chris A. Kieslich ◽  
Manu O. Platt

Enzymes are catalysts in biochemical reactions that, by definition, increase rates of reactions without being altered or destroyed. However, when that enzyme is a protease, a subclass of enzymes that hydrolyze other proteins, and that protease is in a multiprotease system, protease-as-substrate dynamics must be included, challenging assumptions of enzyme inertness, shifting kinetic predictions of that system. Protease-on-protease inactivating hydrolysis can alter predicted protease concentrations used to determine pharmaceutical dosing strategies. Cysteine cathepsins are proteases capable of cathepsin cannibalism, where one cathepsin hydrolyzes another with substrate present, and misunderstanding of these dynamics may cause miscalculations of multiple proteases working in one proteolytic network of interactions occurring in a defined compartment. Once rates for individual protease-on-protease binding and catalysis are determined, proteolytic network dynamics can be explored using computational models of cooperative/competitive degradation by multiple proteases in one system, while simultaneously incorporating substrate cleavage. During parameter optimization, it was revealed that additional distraction reactions, where inactivated proteases become competitive inhibitors to remaining, active proteases, occurred, introducing another network reaction node. Taken together, improved predictions of substrate degradation in a multiple protease network were achieved after including reaction terms of autodigestion, inactivation, cannibalism, and distraction, altering kinetic considerations from other enzymatic systems, since enzyme can be lost to proteolytic degradation. We compiled and encoded these dynamics into an online platform (https://plattlab.shinyapps.io/catKLS/) for individual users to test hypotheses of specific perturbations to multiple cathepsins, substrates, and inhibitors, and predict shifts in proteolytic network reactions and system dynamics.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 157 ◽  
Author(s):  
Ahmed Faraz Khan ◽  
Philip John Roberts ◽  
Alexey A. Burluka

A numerical and experimental investigation in to the role of gasoline surrogates and their reduced chemical kinetic mechanisms in spark ignition (SI) engine knocking has been carried out. In order to predict autoignition of gasoline in a spark ignition engine three reduced chemical kinetic mechanisms have been coupled with quasi-dimensional thermodynamic modelling approach. The modelling was supported by measurements of the knocking tendencies of three fuels of very different compositions yet an equivalent Research Octane Number (RON) of 90 (ULG90, PRF90 and 71.5% by volume toluene blended with n-heptane) as well as iso-octane. The experimental knock onsets provided a benchmark for the chemical kinetic predictions of autoignition and also highlighted the limitations of characterisation of the knock resistance of a gasoline in terms of the Research and Motoring octane numbers and the role of these parameters in surrogate formulation. Two approaches used to optimise the surrogate composition have been discussed and possible surrogates for ULG90 have been formulated and numerically studied. A discussion has also been made on the various surrogates from the literature which have been tested in shock tube and rapid compression machines for their autoignition times and are a source of chemical kinetic mechanism validation. The differences in the knock onsets of the tested fuels have been explained by modelling their reactivity using semi-detailed chemical kinetics. Through this work, the weaknesses and challenges of autoignition modelling in SI engines through gasoline surrogate chemical kinetics have been highlighted. Adequacy of a surrogate in simulating the autoignition behaviour of gasoline has also been investigated as it is more important for the surrogate to have the same reactivity as the gasoline at all engine relevant p − T conditions than having the same RON and Motored Octane Number (MON).


Sign in / Sign up

Export Citation Format

Share Document