chain architecture
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 41)

H-INDEX

29
(FIVE YEARS 4)

Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 40
Author(s):  
Showkat Ahmad Bhat ◽  
Nen-Fu Huang ◽  
Ishfaq Bashir Sofi ◽  
Muhammad Sultan

Modern-day agriculture supply chains have evolved from sovereign and autonomous local stakeholders to a worldwide interconnected system of multiple participants linked by complicated interactions, impacting the production, processing, transportation, and delivery of food to end consumers. Regular instances of fraudulent acts reveal a lack of openness in agriculture supply chains, raising worries about financial losses, eroding customer trust, and lowering corporate brand value. To develop an efficient and reliable trading environment, several fundamental modifications in the present supply chain architecture are required. There is broad consensus that blockchain can improve transparency in agriculture-food supply chains (agri-food SCs). Consumers now demand safe, sustainable, and equitable food production processes, and businesses are using blockchains and the internet of things to meet these needs. For enhanced responsiveness in agri-food SCs, new concepts have evolved that combine blockchains with various Industry 5.0 technologies (e.g., blockchain technology, big data, internet of things (IoT), radio frequency identification (RFID), near field communication (NFC), etc.). It is critical to cut through the hype and examine the technology’s limits, which might stymie its acceptance, implementation, and scalability in agri-food supply chains. This study presents Agri-SCM-BIoT (Agriculture Supply Chain Management using Blockchain and Internet of things) architecture to address the storage and scalability optimization, interoperability, security and privacy issues security, and privacy of personal data along with storage concerns with present single-chain agriculture supply chain systems. We also discussed the classification of security threats with IoT infrastructure and possible available blockchain-based defense mechanisms. Finally, we discussed the features of the proposed supply chain architecture, followed by a conclusion and future work.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2990
Author(s):  
Linchao Zhang ◽  
Lei Hang ◽  
Wenquan Jin ◽  
Dohyeun Kim

The tourism industry can significantly benefit from the blockchain since its implementation can build trust among stakeholders and improve customer satisfaction. However, most of the existing tourism-specified blockchain platforms are single-chains that provide business support for enterprises without guaranteeing transaction information privacy. Besides, these platforms are specified to a single use case and lack interoperability with other platforms to support heterogenous tourism services. This paper aims to address this issue by introducing a multi-chain architecture that utilizes multiple blockchains to enhance processing capability and provide various business services for the tourism industry. The proposed multi-chain architecture improves the interoperability between the activities in different chains by providing functional requirements in practical applications and supports the inter-ledger application. In addition, the private blockchain will be made available to allow users to access the network through central authorization. It also increases the transaction processing capability by distributing multiple tasks across the chains for large-scale applications. To demonstrate the usability and efficiency of the developed approach, a case study on hotel booking is conducted using the blockchain frameworks Winding Tree and Hyperledger Fabric. A comprehensive evaluation experiment is conducted, and the results show the significance of the proposed system.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Aixin Song ◽  
Zachary Hazlett ◽  
Dulith Abeykoon ◽  
Jeremy Dortch ◽  
Andrew Dillon ◽  
...  

UCH37, also known as UCHL5, is a highly conserved deubiquitinating enzyme (DUB) that associates with the 26S proteasome. Recently it was reported that UCH37 activity is stimulated by branched ubiquitin chain architectures. To understand how UCH37 achieves its unique debranching specificity, we performed biochemical and NMR structural analyses and found that UCH37 is activated by contacts with the hydrophobic patches of both distal ubiquitins that emanate from a branched ubiquitin. In addition, RPN13, which recruits UCH37 to the proteasome, further enhances branched-chain specificity by restricting linear ubiquitin chains from having access to the UCH37 active site. In cultured human cells under conditions of proteolytic stress, we show that substrate clearance by the proteasome is promoted by both binding and deubiquitination of branched polyubiquitin by UCH37. Proteasomes containing UCH37(C88A), which is catalytically inactive, aberrantly retain polyubiquitinated species as well as the RAD23B substrate shuttle factor, suggesting a defect in recycling of the proteasome. These findings provide a foundation to understand how proteasome degradation of substrates modified by a unique ubiquitin chain architecture is aided by a DUB.


2021 ◽  
Author(s):  
ABDULLAH MIA ◽  
Mohammad Rakibul Hasan Chowdhury ◽  
Nur Md. Alif Ul Islam

Blockchain is the technology behind several digital currencies. A blockchain is a chain of blocks that keeps records of information in a decentralized and distributed network, with digital signatures stored in each block. Because of the distributed nature of blockchain and other unique properties, transactions are more secure and tamper proof. The paper's methodology gives a detailed study of blockchain's fit in the supply chain industry. Data is stored on many chains using a multi-chain architecture in the framework. Additional to the data management model and block structure model, the model contains the data model and container structure model.


Author(s):  
Xiaoyi Wang ◽  
Weiwei Qiu ◽  
Lei Zeng ◽  
Hongkai Wang ◽  
Yiyang Yao ◽  
...  

2021 ◽  
Author(s):  
Aixin Song ◽  
Zachary Hazlett ◽  
Dulith Abeykoon ◽  
Jeremy Dortch ◽  
Andrew Dillon ◽  
...  

AbstractUCH37, also known as UCHL5, is a highly conserved deubiquitinating enzyme (DUB) that associates with the 26S proteasome. Recently it was reported that UCH37 activity is stimulated by branched ubiquitin chain architectures. To understand how UCH37 achieves its unique debranching specificity, we performed biochemical and NMR structural analyses and found that UCH37 is activated by contacts with the hydrophobic patches of both distal ubiquitins that emanate from a branched ubiquitin. In addition, RPN13, which recruits UCH37 to the proteasome, further enhances branched-chain specificity by restricting linear ubiquitin chains from having access to the UCH37 active site. In cultured human cells under conditions of proteolytic stress, we show that substrate clearance by the proteasome is promoted by both binding and deubiquitination of branched polyubiquitin by UCH37. Proteasomes containing UCH37(C88A), which is catalytically inactive, aberrantly retain polyubiquitinated species as well as the RAD23B substrate shuttle factor, suggesting a defect in recycling of the proteasome. These findings provide a foundation to understand how proteasome degradation of substrates modified by a unique ubiquitin chain architecture is aided by a DUB.


SmartMat ◽  
2021 ◽  
Author(s):  
Jihua Chen ◽  
Sanjib Das ◽  
Ming Shao ◽  
Guoliang Li ◽  
Huada Lian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document