acc oxidase
Recently Published Documents


TOTAL DOCUMENTS

336
(FIVE YEARS 41)

H-INDEX

32
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Mitsutoshi Okamoto ◽  
Tomoko Niki ◽  
Mirai Azuma ◽  
Kenichi Shibuya ◽  
Kazuo Ichimura

Abstract Delphinium flowers are highly sensitive to ethylene and its sepals abscise during senescence, which is associated with increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO) activities and ethylene production in gynoecium and receptacle. Three ACS genes (DgACS1, DgACS2, and DgACS3) and three ACO genes (DgACO1, DgACO2, and DgACO3) were cloned from Delphinium grandiflorum cv. Super Grand Blue. To investigate the contribution of these genes to ethylene production, their expression was analyzed in these genes in the gynoecium and receptacle during natural senescence and following ethylene exposure and pollination. Ethylene production in the gynoecium and receptacle increased during natural flower senescence. The transcript levels of the ACS and ACO genes in these organs, excluding DgACS2 in the receptacle, increased during senescence. Exposure to ethylene accelerated sepal abscission and more strongly increased ethylene production in the receptacle than in the gynoecium. DgACS1 transcript levels in the gynoecium and DgACS2 and DgACO3 transcript levels in the receptacle were increased by ethylene exposure. Pollination accelerated sepal abscission and increased ethylene production in the gynoecium and receptacle. Pollination slightly affected ACS and ACO transcript levels in the gynoecium, whereas DgACO3 transcript level in the receptacle were markedly increased. These results reveal that ACS and ACO gene expression is differently regulated in the gynoecium and receptacle, and some of these genes are more strongly upregulated by ethylene exposure and pollination in the receptacle than in the gynoecium, suggesting the significance of the receptacle to sepal abscission.


2021 ◽  
Author(s):  
Sayaka Imano ◽  
Mayuka Fushimi ◽  
Maurizio Camagna ◽  
Akiko Tsuyama-Koike ◽  
Hitoshi Mori ◽  
...  

Plants recognize molecular patterns unique to a certain group of microbes to induce effective resistance mechanisms. Elicitins are secretory proteins produced by plant pathogenic oomycete genera including Phytophthora and Pythium. Treatment of INF1 (an elicitin produced by P. infestans) induces a series of defense responses in Nicotiana species, including reactive oxygen species (ROS) production, hypersensitive cell death and accumulation of the sesquiterpenoid phytoalexin capsidiol. In this study, we analyzed the expression profiles of N. benthamiana genes after INF1 treatment by RNAseq analysis. Based on their expression patterns, N. benthamiana genes were categorized into 20 clusters and 4,761 (8.3%) out of 57,140 genes were assigned to the clusters for INF1-induced genes. All genes encoding enzymes dedicated for capsidiol production, 5-epi-aristolochene (EA) synthase (NbEAS, 10 copies) and EA dehydrogenase (NbEAH, 6 copies) and some genes for ethylene production, such as 1-aminocyclopropane 1-carboxylate (ACC) synthase (NbACS) and ACC oxidase (NbACO), were significantly upregulated by INF1 treatment. Analysis of NbEAS1 and NbEAS4 promoters revealed that AGACGCC (GCC box-like motif) is the essential cis-element required for INF1-induced expression of NbEAS genes. Given that the GCC box is known to be targeted by ERF (ethylene-responsive factor) transcription factors, we created a complete list of N. benthamiana genes encoding AP2/ERF family transcription factors, and identified 45 out of 337 AP2/ERF genes in the clusters for INF1-induced genes. Among INF1-induced NbERF genes, silencing of NbERF-IX-33 compromised resistance against P. infestans and INF1-induced production of capsidiol. Recombinant NbERF-IX-33 protein can bind to the promoter sequence of NbEAS4, suggesting that NbERF-IX-33 is a transcription factor directly regulating the expression of genes for phytoalexin production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aung Htay Naing ◽  
Hui Yeong Jeong ◽  
Sung Keun Jung ◽  
Chang Kil Kim

Abiotic stress induces the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in plants, which consequently enhances ethylene production and inhibits plant growth. The bacterial ACC deaminase enzyme encoded by the acdS gene reduces stress-induced ethylene production and improves plant growth in response to stress. In this study, overexpression of acdS in Petunia hybrida (‘Mirage Rose’) significantly reduced expression of the ethylene biosynthesis gene ACC oxidase 1 (ACO1) and ethylene production relative to those in wild type (WT) under various abiotic stresses (cold, drought, and salt). The higher reduction of stress-induced ethylene in the transgenic plants, which was due to the overexpression of acdS, led to a greater tolerance to the stresses compared to that in the WT plants. The greater stress tolerances were proven based on better plant growth and physiological performance, which were linked to stress tolerance. Moreover, expression analysis of the genes involved in stress tolerance also supported the increased tolerance of transgenics relative to that with the WT. These results suggest the possibility that acdS is overexpressed in ornamental plants, particularly in bedding plants normally growing outside the environment, to overcome the deleterious effect of ethylene on plant growth under different abiotic stresses. The development of stress-tolerant plants will be helpful to advance the floricultural industry.


2021 ◽  
Vol 22 (19) ◽  
pp. 10760
Author(s):  
Daniel Clayton-Cuch ◽  
Long Yu ◽  
Neil Shirley ◽  
David Bradley ◽  
Vincent Bulone ◽  
...  

Abscisic acid (ABA) is a key signaling molecule promoting ripening of non-climacteric fruits such as sweet cherry (Prunus avium L.). To shed light on the role of other hormones on fruit development, ripening and anthocyanin production, the synthetic auxin 1-naphthaleneacetic acid (NAA) was applied to sweet cherry trees during the straw-color stage of fruit development. NAA-treated fruits exhibited higher concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC) and ABA-glucose ester (ABA-GE), which are a precursor of ethylene and a primary storage form of ABA, respectively. Consistent with these observations, transcript levels of genes encoding ACC synthase and ACC oxidase, both involved in ethylene biosynthesis, were increased after 6 days of NAA treatment, and both ABA concentration and expression of the regulator gene of ABA biosynthesis (NCED1 encoding 9-cis-epoxycarotenoid dioxygenase) were highest during early fruit ripening. In addition, transcript levels of key anthocyanin regulatory, biosynthetic and transport genes were significantly upregulated upon fruit exposure to NAA. This was accompanied by an increased anthocyanin concentration and fruit weight whilst fruit firmness and cracking index decreased. Altogether our data suggest that NAA treatment alters ethylene production, which in turn induces ripening in sweet cherry and enhanced anthocyanin production, possibly through ABA metabolism. The results from our study highlight the potential to use a single NAA treatment for manipulation of cherry ripening.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xian-chao Shang ◽  
Xianjie Cai ◽  
Yanan Zhou ◽  
Xiaobin Han ◽  
Cheng-Sheng Zhang ◽  
...  

Bacterial communities in the rhizosphere play an important role in sustaining plant growth and the health of diverse soils. Recent studies have demonstrated that microbial keystone taxa in the rhizosphere microbial community are extremely critical for the suppression of diseases. However, the mechanisms involved in disease suppression by keystone species remain unclear. The present study assessed the effects of three Pseudomonas strains, which were identified as keystone species in our previous study, on the growth performance and root-associated bacterial community of tobacco plants. A high relative abundance of Ralstonia was found in the non-inoculated group, while a large Azospira population was observed in all groups inoculated with the three Pseudomonas strains. Correspondingly, the activities of the defense-related enzymes and the expression levels of the defense signaling marker genes of the plant were increased after inoculation with the Pseudomonas strains. Moreover, the correlation analyses showed that the relative abundance of Azospira, the activity of superoxide dismutase, catalase, and polyphenol oxidase, and the expression of H1N1, ACC Oxidase, and PR1 a/c had a significantly negative (p<0.05) relationship with the abundance of Ralstonia. This further revealed that the keystone species, such as Pseudomonas spp., can suppress bacterial wilt disease by enhancing the systemic resistance of tobacco plants.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Niels J. Nieuwenhuizen ◽  
Xiuyin Chen ◽  
Mickaël Pellan ◽  
Lei Zhang ◽  
Lindy Guo ◽  
...  

Abstract Background The phytohormone ethylene controls many processes in plant development and acts as a key signaling molecule in response to biotic and abiotic stresses: it is rapidly induced by flooding, wounding, drought, and pathogen attack as well as during abscission and fruit ripening. In kiwifruit (Actinidia spp.), fruit ripening is characterized by two distinct phases: an early phase of system-1 ethylene biosynthesis characterized by absence of autocatalytic ethylene, followed by a late burst of autocatalytic (system-2) ethylene accompanied by aroma production and further ripening. Progress has been made in understanding the transcriptional regulation of kiwifruit fruit ripening but the regulation of system-1 ethylene biosynthesis remains largely unknown. The aim of this work is to better understand the transcriptional regulation of both systems of ethylene biosynthesis in contrasting kiwifruit organs: fruit and leaves. Results A detailed molecular study in kiwifruit (A. chinensis) revealed that ethylene biosynthesis was regulated differently between leaf and fruit after mechanical wounding. In fruit, wound ethylene biosynthesis was accompanied by transcriptional increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO) and members of the NAC class of transcription factors (TFs). However, in kiwifruit leaves, wound-specific transcriptional increases were largely absent, despite a more rapid induction of ethylene production compared to fruit, suggesting that post-transcriptional control mechanisms in kiwifruit leaves are more important. One ACS member, AcACS1, appears to fulfil a dominant double role; controlling both fruit wound (system-1) and autocatalytic ripening (system-2) ethylene biosynthesis. In kiwifruit, transcriptional regulation of both system-1 and -2 ethylene in fruit appears to be controlled by temporal up-regulation of four NAC (NAM, ATAF1/2, CUC2) TFs (AcNAC1–4) that induce AcACS1 expression by directly binding to the AcACS1 promoter as shown using gel-shift (EMSA) and by activation of the AcACS1 promoter in planta as shown by gene activation assays combined with promoter deletion analysis. Conclusions Our results indicate that in kiwifruit the NAC TFs AcNAC2–4 regulate both system-1 and -2 ethylene biosynthesis in fruit during wounding and ripening through control of AcACS1 expression levels but not in leaves where post-transcriptional/translational regulatory mechanisms may prevail.


2021 ◽  
Author(s):  
Marlon Enrique Lopez ◽  
Iasminy Silva Santos ◽  
Robert Marquez Gutierrez ◽  
Andrea Jaramillo Mesa ◽  
Carlos Henrique Cardon ◽  
...  

Coffee (Coffea arabica L.) presents an asynchronous flowering regulated by endogenous and environmental stimulus, and anthesis occurs once plants are rehydrated after a period of water deficit. We evaluated the evolution of Abscisic Acid (ABA), ethylene, 1-aminocyclopropane-1-carboxylate (ACC) content, ACC oxidase (ACO) activity, and expression analysis of the Lysine Histidine Transporter 1 (LHT1) transporter, in roots, leaves and, flower buds from three coffee genotypes (Coffea arabica L. cv Oeiras, Acaua, and Semperflorens) cultivated under field conditions with two experiments. In a third field experiment, the effect of exogenous supply of ACC in coffee anthesis was evaluated. We found an increased ACC level in all tissues from the three coffee genotypes in the re-watering period just before anthesis for all tissues and high expression of the LHT1 gene in flower buds and leaves. Ethylene content and ACO activity decreased from rainy to dry period whereas ABA content increased. Higher number of opened and G6 stage flower buds were observed in the treatment with exogenous ACC. The results showed that the interaction of ABA-ACO-ethylene and intercellular ACC transport among leaves, buds, and roots in coffee favors an increased level of ACC that is most likely, involved as a modulator in coffee anthesis.


2021 ◽  
Author(s):  
Jian Wang ◽  
Xiaofen Liu ◽  
Wen-qiu Wang ◽  
Hui-qin Zhang ◽  
Xue-ren Yin

Levels of ethylene, implicated in a diverse array of plants for inducing fruit ripening, is influenced by genetic and environmental factors, such as the other plant hormones. Among these, salicylic acid (SA) has been demonstrated to inhibit ethylene biosynthesis in fruit, yet the underlying regulatory mechanisms remains elusive. Here, we showed that treatment with exogenous ASA (acetylsalicylic acid) dramatically reduced ethylene production, as well as activities of ACC synthase (ACS) and ACC oxidase (ACO), in kiwifruit tissues. Comparative transcriptome analysis indicated the differential expression of ethylene biosynthetic genes (AdACS1/2 and AdACO5). A screen of transcription factors indicated that AdERF105L and AdWRKY29 were ASA-responsive regulators of AdACS1/2 and AdACO5, respectively. In addition to these genes, AdACS3 and AdACO3 were abundantly expressed in both ASA-treated and control tissues. AdACS3 protein was phosphorylated and stabilized by AdMPK16, a mitogen-activated protein kinase; while AdACO3 activity was enhanced by AdAP, an aspartic peptidase. Exogenous ASA down-regulated AdMPK16 and AdAP, thereby influencing ethylene biosynthesis at a post-transcriptional level. These findings propose a multidimensional system for SA-inhibition on ethylene biosynthesis, inducing differential expression of some ethylene biosynthesis genes, as well as differential effects on protein activity on other targets.


2021 ◽  
Author(s):  
M. A. Siddikee ◽  
M.I. Zereen ◽  
Mei Wu ◽  
Wei Zhang ◽  
Chuan Chao Dai

Abstract The endophytic fungus Phomopsis liquidambaris is characterized as a plant growth-promoting agent under salt stress, but its mechanism is unknown. Herein, 1-Aminocyclopropane-1-Carboxylate Deaminase (ACCD) from the strain was confirmed that it had the ability of utilizing 1-Aminocyclopropane-1-Carboxylate as the sole nitrogen source. The full-length ACCD gene was 1,152 bp, which encodes a mature protein of 384 amino acids with a molecular mass of 41.53 kDa. The ACCD activity was 3.9-fold in 3 mmol L− 1 ACC by qRT-PCR under salt stress comparing with no salt tress. Ethylene production was increased to 34.55–70.60% and reduced the growth of rice by 23–69.73% under salt stress. Inoculation of P. liquidambaris increased root-shoot length, fresh and dry weight, and overall growth of stressed rice seedlings. ACC accumulation, ACC synthase and ACC oxidase activities increased in salt-treated rice seedlings, while they were significantly reduced when P. liquidambaris was inoculated into Rice by qRT-PCR. It therefore can be concluded that P. liquidambaris can be used as a plant growth promoting fungus against salt stress and other biotic or abiotic stresses.


2021 ◽  
Author(s):  
JS Gao ◽  
Shunyao Zhuang ◽  
YH Zhang ◽  
ZZ Qian

Abstract PurposeHypoxia stress is thought to be one of the major abiotic stresses that inhibits the growth and development of higher plants. Phyllostachys pracecox is sensitive to oxygen and suffers soil hypoxia during cultivation; however, the corresponding measures to mitigate this stress are still limited in practice. In this study, a simulated hypoxia stress with flooding was conducted to investigate the regulatory effect of Spermidine (Spd) on P. praecox seedlings. MethodsIndicators including growth, membrane lipid peroxidation, S-adenosylmethionine decarboxylase (SAMDC), ACC oxidase (ACO) and ACC synthetase (ACS) activities, indole-3-acetic acid (IAA) and abscisic acid (ABA) content, and expression of hormone-related genes in P. praecox were measured. ResultsApplication of 1 mM and 2 mM Spd could alleviate plant growth inhibition and reduce oxidative damage from hypoxia stress. Exogenous Spd significantly (P<0.05) increased SAMDC activity, enhanced ABA and IAA content, and reduced ACO and ACS activities to protect membranes from lipid peroxidation. Moreover, exogenous Spd up-regulated the expression of auxin-related genes auxin responsive factor1 (ARF1), auxin1 protein (AUX1), auxin2 protein (AUX2), auxin3 protein (AUX3) and auxin4 protein (AUX4), and down-regulated the expression of ethylene-related ACO and ACS genes during flooding. ConclusionThe results indicated that exogenous Spd altered hormone concentrations and the expression of hormone-related genes, thereby protecting the bamboo growth. Our data suggest that Spd can be used to reduce hypoxia-induced cell damage and improve the adaptability of P. praecox to flooding stress.


Sign in / Sign up

Export Citation Format

Share Document