In the present paper, statistical inference problem is considered for the geometric process (GP) by assuming the distribution of the first arrival time is generalized Rayleigh with the parameters $\alpha$ and $\lambda$. We use the maximum likelihood method for obtaining the ratio parameter of the GP and distributional parameters of the generalized Rayleigh distribution. By a series of Monte-Carlo simulations evaluated through the different samples of sizes small, moderate and large, we also compare the estimation performances of the maximum likelihood estimators with the other estimators available in the literature such as modified moment, modified L-moment, and modified least squares. Furthermore, we present two real-life dataset analyzes to show the modeling behavior of GP with generalized Rayleigh distribution.