<p>The current crisis in loss of biodiversity requires rapid action. Knowledge of species' distribution patterns across scales is of high importance in determining their current status. However, species display many different distribution patterns on multiple scales. A positive relationship between regional (broad-scale) distribution and local abundance (fine-scale) of species is almost a constant pattern in macroecology. Nevertheless interspecific relationships typically contain much scatter. For example, species that possess high local abundance and narrow ranges, or species that are widespread, but locally rare. One way to describe these spatial features of distribution patterns is by analysing the scaling properties of occupancy (e.g., aggregation) in combination with knowledge of the processes that are generating the specific spatial pattern (e.g., reproduction, dispersal, and colonisation). The main goal of my research was to investigate if distribution patterns correlate with plant life-history traits across multiple scales. First, I compared the performance of five empirical models for their ability to describe the scaling relationship of occupancy in two datasets from Molesworth Station, New Zealand. Secondly, I analysed the association between spatial patterns and life history traits at two spatial scales in an assemblage of 46 grassland species in Molesworth Station. The spatial arrangement was quantified using the parameter k from the Negative Binomial Distribution (NBD). Finally, I investigated the same association between spatial patterns and life-history traits across local, regional and national scales, focusing in one of the most diverse families of plant species in New Zealand, the Veronica sect. Hebe (Plantaginaceae). The spatial arrangement was investigated using the mass fractal dimension. Cross-species correlations and phylogenetically independent contrasts were used to investigate the relationships between plant life-history traits and spatial patterns on both data bases. There was no superior occupancy-area model overall for describing the scaling relationship, however the results showed that a variety of occupancy-area models can be fit to different data sets at diverse spatial scales using nonlinear regression. Additionally, here I showed that it is possible to deduce and extrapolate information on occupancy at fine scales from coarse-scale data. For the 46 plantassemblage in Molesworth Station, Specific leaf area (SLA) exhibits a positive association with aggregation in cross-species analysis, while leaf area showed a negative association, and dispersule mass a positive correlation with degree of aggregation in phylogenetic contrast analysis at a local-scale (20 × 20 m resolution). Plant height was the only life-history trait that was associated with degree of aggregation at a regional-scale (100 × 60 mresolution). For the Veronica sect. Hebe dataset, leaf area showed a positive correlation with aggregation while specific leaf area showed a negative correlation with aggregation at a fine local-scale (2.5-60 m resolution). Inflorescence length, breeding system and leaf area showed a negative correlation with degree of aggregation at a regional-scale (2.5-20 km resolution). Height was positively associated with aggregation at national-scale (20-100 km resolution). Although life-history traits showed low predictive ability in explaining aggregation throughout this thesis, there was a general pattern about which processes and traits were important at different scales. At local scales traits related to dispersal and completion such as SLA , leaf area, dispersule mass and the presence of structures in seeds for dispersal, were important; while at regional scales traits related to reproduction such as breeding system, inflorescence length and traits related to dispersal (seed mass) were significant. At national scales only plant height was important in predicting aggregation. Here, it was illustrated how the parameters of these scaling models capture an important aspect of spatial pattern that can be related to other macroecological relationships and the life-history traits of species. This study shows that when several scales of analysis are considered, we can improve our understanding about the factors that are related to species' distribution patterns.</p>