legume plant
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 18)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Saumik Basu ◽  
Benjamin W Lee ◽  
Robert E Clark ◽  
Sayanta Bera ◽  
Clare L Casteel ◽  
...  

Soil bacteria that form mutualisms with plants, such as rhizobia, affects susceptibility of plants to herbivores and pathogens. Soil rhizobia also promote nitrogen fixation, which mediates host nutrient levels and defenses. However, whether aboveground herbivores affect the function of soil rhizobia remains poorly understood. We assessed reciprocal interactions between Sitona lineatus, a chewing herbivore, and pea (Pisum sativum) plants grown with or without rhizobia (Rhizobium leguminosarum biovar viciae). We also examined the underlying plant-defense and nutritional mechanisms of these interactions. In our experiments, soil rhizobia influenced feeding and herbivory by chewing herbivores. Leaf defoliation by S. lineatus was lower on plants treated with rhizobia, but these insects had similar amino acid levels compared to those on un-inoculated plants. Plants grown with soil rhizobia had increased expression of gene transcripts associated with phytohormone-mediated defense, which may explain decreased susceptibility to S. lineatus. Rhizobia also induced expression of gene transcripts associated with physical and antioxidant-related defense pathways in P. sativum. Conversely, S. lineatus feeding reduced the number of root nodules and nodule biomass, suggesting a disruption of the symbiosis between plants and rhizobia. Our study shows that aboveground herbivores can engage in mutually antagonistic interactions with soil microbes mediated through a multitude of plant-mediated pathways.


Author(s):  
Zhili Zhao ◽  
Wenyu Zhang ◽  
Yang Liu ◽  
Shuai Li ◽  
Wu Yao ◽  
...  

AbstractThe legume plant alfalfa (Medicago sativa L.) is a widely cultivated perennial forage due to its high protein content, palatability, and strong adaptability to diverse agro-ecological zones. Alfalfa is a self-incompatible cross-pollinated autotetraploid species with tetrasomic inheritance. Therefore, maintaining excellent traits through seed reproduction is a prime challenge in alfalfa. However, the cutting propagation technology could enable consistent multiplication of quality plants that are genetically identical to the parent plant. The current study aimed to develop a simple, cost-effective, reproducible, and efficient hydroponic cutting method to preserve alfalfa plants and for molecular research. In this study, alfalfa landrace ‘Wudi’ was grown in hydroponics for 30 days and used as source material for cuttings. The top, middle and bottom sections of its stem were used as cuttings. The rooting rate, root length, and stem height of the different stem sections were compared to determine the best segment for alfalfa propagation in four nutrient treatments (HM, HM + 1/500H, HM + 1/1000H and d HM + 1/2000H). After 21 days of culture, the rooting rates of all the three stem types under four cutting nutrient solutions were above 78%. The rooting rate of the middle and bottom parts in HM + 1/1000 H and HM + 1/2000 H nutrient solutions reached more than 93%, with a higher health survey score (> 4.70). In conclusion, this study developed a de novo cutting propagation method that can be used to conserve and propagate germplasm in breeding programs and research. This method is a new report on the cutting propagation of alfalfa by hydroponics, which could supplement the existing cutting propagation methods.


2021 ◽  
Author(s):  
Saumik Basu ◽  
Robert E. Clark ◽  
Robert Blundell ◽  
Clare L. Casteel ◽  
Akaisha M. Charlton ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiang Zhang ◽  
Yan Zhu ◽  
Jun Ye ◽  
Ziyu Ye ◽  
Ruirui Zhu ◽  
...  

In many plants, isoflavones are the main secondary metabolites that have various pharmacological activities, but the low water solubility of aglycones limits their usage. The O-glycosylation of (iso)flavones is a promising way to overcome this barrier. O-glycosyltransferases (UGTs) are key enzymes in the biosynthesis of (iso)flavonoid O-glycosides in plants. However, limited investigations on isoflavonoid O-UGTs have been reported, and they mainly focused on legumes. Iris domestica (L.) Goldblatt et Mabberley is a non-legume plant rich in various isoflavonoid glycosides. However, there are no reports regarding its glycosylation mechanism, despite the I. domestica transcriptome previously being annotated as having non-active isoflavone 7-O-UGTs. Our previous experiments indicated that isoflavonoid glycosides were induced by CuCl2 in I. domestica calli; therefore, we hypothesized that isoflavone O-UGTs may be induced by Cu2+. Thus, a comparative transcriptome analysis was performed using I. domestica seedlings treated with CuCl2, and eight new active BcUGTs were obtained. Biochemical analyses showed that most of the active BcUGTs had broad substrate spectra; however, substrates lacking 5-OH were rarely catalyzed. Real-time quantitative PCR results further indicated that the transcriptional levels of BcUGTs were remarkably induced by Cu2+. Our study increases the understanding of UGTs and isoflavone biosynthesis in non-legume plants.


Author(s):  
An. Kh. Baymiev ◽  
A. A. Vladimirova ◽  
E. S. Akimova ◽  
I. S. Koryakov ◽  
Al. Kh. Baymiev

The contribution of the legume plant to the formation of the genetic diversity of nodule bacteria and its effect on the activity of horizontal transfer of symbiotic genes in rhizospheric bacteria is studied.


2020 ◽  
Vol 21 (19) ◽  
pp. 7142
Author(s):  
Qiguo Sun ◽  
Shuhan Yu ◽  
Zhenfei Guo

Calcium is an important second messenger in mediating adaptation responses of plants to abiotic and biotic stresses. Calmodulin-like (CML) protein is an important calcium-signaling protein that can sense and decode Ca2+ signal in plants. Medicago truncatula is a model legume plant; however, investigations of MtCML proteins are limited. Using genome analysis and BLAST database searches, fifty MtCML proteins that possess EF-hand motifs were identified. Phylogenetic analysis showed that CML homologs between M. truncatula, Arabidopsis thaliana and Oryza sativa shared close relationships. Gene structure analysis revealed that these MtCML genes contained one to four conserved EF-hand motifs. All MtCMLs are localized to eight chromosomes and underwent gene duplication. In addition, MtCML genes were differentially expressed in different tissues of M. truncatula. Cis-acting elements in promoter region and expression analysis revealed the potential response of MtCML protein to abiotic stress and hormones. The results provide a basis of further functional research on the MtCML gene family and facilitate their potential use for applications in the genetic improvement on M. truncatula in drought, cold and salt stress environments.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Francina Lebogang Bopape ◽  
Ahmed Idris Hassen ◽  
Zacharias H. Swanevelder ◽  
Eastonce T. Gwata

Rhizobium tropici SARCC-755 is a free-living soil bacterium that formed nodules on pigeonpea roots in the present study. However, the draft genome sequence reveals that this Rhizobium species contains the nolR gene but lacks the common nodulation (nodABC) genes and probably uses other pathways to induce nodules on the legume plant.


Sign in / Sign up

Export Citation Format

Share Document