microglia polarization
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 105)

H-INDEX

23
(FIVE YEARS 8)

Author(s):  
Liping Zhai ◽  
Heping Shen ◽  
Yongjia Sheng ◽  
weiqun Guo ◽  
Qiaobing Guan ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xiaojun Liu ◽  
Jinyun Ma ◽  
Guiqing Ding ◽  
Qianyi Gong ◽  
Yuanhua Wang ◽  
...  

Activated microglia is considered to be major mediators of the neuroinflammatory environment in demyelinating diseases of the central nervous system (CNS). Activated microglia are mainly polarized into M1 type, which plays a role in promoting inflammation and demyelinating. However, the proportion of microglia polarized into M2 type is relatively low, which cannot fully play the role of anti-inflammatory and resistance to demyelinating. Our previous study found that Astragalus polysaccharides (APS) has an immunomodulatory effect and can inhibit neuroinflammation and demyelination in experimental autoimmune encephalomyelitis (EAE), which is a classic animal model of CNS demyelinating disease. In this study, we found that APS was effective in treating EAE mice. It restored microglia balance by inhibiting the polarization of microglia to M1-like phenotype and promoting the polarization of microglia to M2-like phenotype in vivo and in vitro. miR-155 is a key factor in regulating microglia polarization. We found that APS could inhibit the expression level of miR-155 in vivo and in vitro. Furthermore, we performed transfection overexpression and blocking experiments. The results showed that miR-155 mediated the polarization of microglia M1/M2 phenotype, while the selective inhibitor of miR-155 attenuated the inhibition of APS on microglia M1 phenotype and eliminated the promotion of APS on microglia M2 phenotype. Microglia can secrete IL-1α, TNF-α, and C1q after polarizing into M1 type and induce the activation of A1 neurotoxic astrocytes, further aggravating neuroinflammation and demyelination. APS reduced the secretion of IL-1α, TNF-α, and C1q by activated microglia, thus inhibited the formation of A1 neurotoxic astrocytes. In summary, our study suggests that APS regulates the polarization of microglia from M1 to M2 phenotype by inhibiting the miR-155, reduces the secretion of inflammatory factors, and inhibits the activation of neurotoxic astrocytes, thus effectively treating EAE.


2021 ◽  
Author(s):  
Yuqi Ma ◽  
Peixia Fan ◽  
Rui Zhao ◽  
Yinghua Zhang ◽  
Xianwei Wang ◽  
...  

Abstract BackgroundThe inflammatory response caused by microglia in the central nervous system plays an important role in Alzheimer's disease. Neuregulin-1 (NRG1) is a member of the neuregulin family and has been demonstrated to have anti-inflammatory properties. The relationship between NRG1, microglia phenotype and neuroinflammation remains unclear.Materials and MethodsBV2 cells were used to examine the mechanism of NRG1 in regulating microglia polarization. Neuronal apoptosis, inflammatory factors TNF-α and iNOS, microglia polarization, ErbB4 and NF-κB p65 expression were assessed.ResultsWe found that exogenous NRG1 treatment or overexpression improved microglial activity and reduced the secretion of the inflammatory factors TNF-α and iNOS in vitro. The expression of Bax in SH-SY5Y neuron cells incubated with medium collected from the NRG1 treatment group decreased. Additionally, our study showed that NRG1 treatment reduced the levels of the M1 microglia markers CD120 and iNOS and increased the levels of the M2 microglia markers CD206 and Arg-1. Furthermore, we observed that NRG1 treatment attenuated Aβ-induced NF-κB activation and promoted the expression of p-ErbB4 and that knockdown of ErbB4 abrogated the effects of NRG1 on NF-κB, Bax levels and M2 microglial polarization. ConclusionNRG1 inhibits the release of inflammatory factors in microglia and regulates the switching of the M1/M2 microglia phenotype, most likely via ErbB4-dependent inhibition of the NF-κB pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Da-Yong Xia ◽  
Jin-Long Yuan ◽  
Xiao-Chun Jiang ◽  
Min Qi ◽  
Nian-Sheng Lai ◽  
...  

Mounting evidence has suggested that modulating microglia polarization from pro-inflammatory M1 phenotype to anti-inflammatory M2 state might be a potential therapeutic approach in the treatment of subarachnoid hemorrhage (SAH) injury. Our previous study has indicated that sirtuin 1 (SIRT1) could ameliorate early brain injury (EBI) in SAH by reducing oxidative damage and neuroinflammation. However, the effects of SIRT1 on microglial polarization and the underlying molecular mechanisms after SAH have not been fully illustrated. In the present study, we first observed that EX527, a potent selective SIRT1 inhibitor, enhanced microglial M1 polarization and nod-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation in microglia after SAH. Administration of SRT1720, an agonist of SIRT1, significantly enhanced SIRT1 expression, improved functional recovery, and ameliorated brain edema and neuronal death after SAH. Moreover, SRT1720 modulated the microglia polarization shift from the M1 phenotype and skewed toward the M2 phenotype. Additionally, SRT1720 significantly decreased acetylation of forkhead box protein O1, inhibited the overproduction of reactive oxygen species (ROS) and suppressed NLRP3 inflammasome signaling. In contrast, EX527 abated the upregulation of SIRT1 and reversed the inhibitory effects of SRT1720 on ROS-NLRP3 inflammasome activation and EBI. Similarly, in vitro, SRT1720 suppressed inflammatory response, oxidative damage, and neuronal degeneration, and improved cell viability in neurons and microglia co-culture system. These effects were associated with the suppression of ROS-NLRP3 inflammasome and stimulation of SIRT1 signaling, which could be abated by EX527. Altogether, these findings indicate that SRT1720, an SIRT1 agonist, can ameliorate EBI after SAH by shifting the microglial phenotype toward M2 via modulation of ROS-mediated NLRP3 inflammasome signaling.


2021 ◽  
Vol 13 ◽  
Author(s):  
Qinqin Wang ◽  
Hongmei Yao ◽  
Wenyan Liu ◽  
Bailiu Ya ◽  
Hongju Cheng ◽  
...  

Neuroinflammation regulated by microglia is one of the important factors involved in the pathogenesis of Alzheimer’s disease (AD). Activated microglia exhibited phenotypes termed as M1 and M2 phenotypes separately. M1 microglia contribute to the development of inflammation via upregulating pro-inflammatory cytokines, while M2 microglia exert anti-inflammation effects through enhancing the expression of anti-inflammation factors. Moreover, M1 and M2 microglia could be mutually transformed under various conditions. Both M1 and M2 microglia are implicated in AD. Amyloid-β (Aβ) and hyperphosphorylated tau are two major components of AD pathological hallmarks, neuritic plaques, and neurofibrillary tangles. Both Aβ and hyperphosphorylated tau were involved in microglial activation and subsequent inflammation, which further contribute to neuronal and synaptic loss in AD. In this review, we summarized the roles of M1 and M2 microglia in AD and underlying mechanisms, which will provide an insight into the role of microglia in the pathogenesis of AD and highlight the therapeutic potential of modulating microglia.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2669
Author(s):  
Shu Yang ◽  
Alexander Magnutzki ◽  
Najwa Ouali Alami ◽  
Michael Lattke ◽  
Tabea Melissa Hein ◽  
...  

Alzheimer’s disease (AD) is a common neurodegenerative disease that is accompanied by pronounced neuroinflammatory responses mainly characterized by marked microgliosis and astrogliosis. However, it remains open as to how different aspects of astrocytic and microglial activation affect disease progression. Previously, we found that microglia expansion in the spinal cord, initiated by IKK2/NF-κB activation in astrocytes, exhibits stage-dependent beneficial effects on the progression of amyotrophic lateral sclerosis. Here, we investigated the impact of NF-κB-initiated neuroinflammation on AD pathogenesis using the APP23 mouse model of AD in combination with conditional activation of IKK2/NF-κB signaling in astrocytes. We show that NF-κB activation in astrocytes triggers a distinct neuroinflammatory response characterized by striking astrogliosis as well as prominent microglial reactivity. Immunohistochemistry and Congo red staining revealed an overall reduction in the size and number of amyloid plaques in the cerebral cortex and hippocampus. Interestingly, isolated primary astrocytes and microglia cells exhibit specific marker gene profiles which, in the case of microglia, point to an enhanced plaque clearance capacity. In contrast, direct IKK2/NF-κB activation in microglia results in a pro-inflammatory polarization program. Our findings suggest that IKK2/NF-κB signaling in astrocytes may activate paracrine mechanisms acting on microglia function but also on APP processing in neurons.


2021 ◽  
Vol 8 ◽  
Author(s):  
Juanjuan Lu ◽  
Jie Wang ◽  
Long Yu ◽  
Rong Cui ◽  
Ying Zhang ◽  
...  

Background: Exercise has been proven to be an effective therapy for stroke by reducing the microglia-initiated proinflammatory response. Few studies, however, have focused on the phenotypic changes in microglia cells caused by exercise training. The present study was designed to evaluate the influence of treadmill exercise on microglia polarization and the molecular mechanisms involved.Methods: Male Sprague-Dawley rats were randomly assigned into 3 groups: sham, MCAO and exercise. The middle cerebral artery occlusion (MCAO) and exercise groups received MCAO surgery and the sham group a sham operation. The exercise group also underwent treadmill exercise after the surgery. These groups were studied after 4 and 7 days to evaluate behavioral performance using a modified neurological severity score (mNSS), and infarct conditions using 2,3,5-triphenyl tetrazolium chloride. Quantitative real-time polymerase chain reaction (qRT-PCR) and Luminex was employed to determine the expressions of markers of microglia phenotypes. Western blotting was employed to identify the phosphorylation levels of Janus kinase1 (JAK1) and signal transducer and activator of transcription 6 (STAT6). Immunofluorescence was conducted to identify microglia phenotypes.Results: Treadmill exercise was found to improve neurobehavioral outcomes, mainly motor and balance functions, reduce infarct volumes and significantly increase interleukin-4 (IL-4) expression. In addition, treadmill exercise inhibited M1 microglia and promoted M2 microglia activation as evidenced by decreased M1 and increased M2 markers. Furthermore, an obvious increase in p-JAK1 and p-STAT6 was observed in the exercise group.Conclusions: Treadmill exercise ameliorates cerebral ischemia–reperfusion injury by enhancing IL-4 expression to promote M2 microglia polarization, possibly via the JAK1-STAT6 pathway.


2021 ◽  
Vol 22 (19) ◽  
pp. 10728
Author(s):  
Anna Tyrtyshnaia ◽  
Sophia Konovalova ◽  
Anatoly Bondar ◽  
Ekaterina Ermolenko ◽  
Ruslan Sultanov ◽  
...  

The search for methods of cognitive impairment treatment and prevention in neurological and neurodegenerative diseases is an urgent task of modern neurobiology. It is now known that various diseases, accompanied by dementia, exhibit a pronounced neuroinflammation. Considering the significant docosahexaenoic and eicosapentaenoic polyunsaturated fatty acids’ therapeutic potential, we decided to investigate and compare anti-inflammatory activity of their N-acylethanolamine derivatives. As a result, we found that both N-docosahexaenoylethanolamine (synaptamide) and N-eicosapentaenoylethanolamine (EPEA) prevents an LPS-mediated increase in the proinflammatory cytokines TNF-α and IL-6 production in the SIM-A9 microglia culture. In an in vivo experiment, synaptamide reversed an increase in LPS-mediated hippocampal TNF-α and IL-1β, but EPEA did not. However, both compounds contributed to the microglia polarization towards the M2-phenotype. Synaptamide, rather than EPEA, inhibited the Iba-1-positive microglia staining area increase. However, both synaptamide and EPEA prevented the LPS-mediated astrogliosis. A study of BDNF immunoreactivity showed that synaptamide, but not EPEA, reversed an LPS-mediated decrease in BDNF production. Despite the more pronounced anti-inflammatory activity of synaptamide, both compounds were effective in maintaining a normal level of hippocampal long-term potentiation in neuroinflammation. The results indicate a high therapeutic potential for both compounds. However, some tests have shown higher activity of synaptamide compared to EPEA.


2021 ◽  
Vol 99 ◽  
pp. 107930
Author(s):  
Cuicui Yang ◽  
Shili Gong ◽  
Xiaoping Chen ◽  
Mingyang Wang ◽  
Li Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document