separable convex programming
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
pp. 1-28
Author(s):  
Yuan Shen ◽  
Yannian Zuo ◽  
Liming Sun ◽  
Xiayang Zhang

We consider the linearly constrained separable convex optimization problem whose objective function is separable with respect to [Formula: see text] blocks of variables. A bunch of methods have been proposed and extensively studied in the past decade. Specifically, a modified strictly contractive Peaceman–Rachford splitting method (SC-PRCM) [S. H. Jiang and M. Li, A modified strictly contractive Peaceman–Rachford splitting method for multi-block separable convex programming, J. Ind. Manag. Optim. 14(1) (2018) 397-412] has been well studied in the literature for the special case of [Formula: see text]. Based on the modified SC-PRCM, we present modified proximal symmetric ADMMs (MPSADMMs) to solve the multi-block problem. In MPSADMMs, all subproblems but the first one are attached with a simple proximal term, and the multipliers are updated twice. At the end of each iteration, the output is corrected via a simple correction step. Without stringent assumptions, we establish the global convergence result and the [Formula: see text] convergence rate in the ergodic sense for the new algorithms. Preliminary numerical results show that our proposed algorithms are effective for solving the linearly constrained quadratic programming and the robust principal component analysis problems.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Miantao Chao ◽  
Yongxin Zhao ◽  
Dongying Liang

In this paper, we considers the separable convex programming problem with linear constraints. Its objective function is the sum of m individual blocks with nonoverlapping variables and each block consists of two functions: one is smooth convex and the other one is convex. For the general case m≥3, we present a gradient-based alternating direction method of multipliers with a substitution. For the proposed algorithm, we prove its convergence via the analytic framework of contractive-type methods and derive a worst-case O1/t convergence rate in nonergodic sense. Finally, some preliminary numerical results are reported to support the efficiency of the proposed algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jing Liu ◽  
Yongrui Duan ◽  
Tonghui Wang

The augmented Lagrangian method (ALM) is one of the most successful first-order methods for convex programming with linear equality constraints. To solve the two-block separable convex minimization problem, we always use the parallel splitting ALM method. In this paper, we will show that no matter how small the step size and the penalty parameter are, the convergence of the parallel splitting ALM is not guaranteed. We propose a new convergent parallel splitting ALM (PSALM), which is the regularizing ALM’s minimization subproblem by some simple proximal terms. In application this new PSALM is used to solve video background extraction problems and our numerical results indicate that this new PSALM is efficient.


Sign in / Sign up

Export Citation Format

Share Document