fock state
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 38)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Vol 19 (2) ◽  
pp. 025203
Author(s):  
S P Kulik ◽  
K S Kravtsov ◽  
S N Molotkov

Abstract The analysis of the security of quantum key distribution systems with respect to an attack with nondemolishing measurement of the number of photons (photon number splitting—PNS attack) is carried out under the assumption that in the communication channel in each parcel there is a pure Fock state with a different number of photons, and the distribution of states by number of photons has Poisson statistics. In reality, in the communication channel in each parcel there are not individual Fock states, but a pure coherent state with a random phase—a superposition of Fock states with different numbers of photons. The paper analyzes the necessary experimental resources necessary to prepare individual Fock states with a certain number of photons from the superposition of Fock states for a PNS attack. Optical schemes for implementing such an attack are given, and estimates of experimental parameters at which a PNS attack is possible are made.


Author(s):  
Dmitri E. Kharzeev

High energy hadron interactions are commonly described by using a probabilistic parton model that ignores quantum entanglement present in the light-cone wave functions. Here, we argue that since a high energy interaction samples an instant snapshot of the hadron wave function, the phases of different Fock state wave functions cannot be measured—therefore the light-cone density matrix has to be traced over these unobservable phases. Performing this trace with the corresponding U ( 1 ) Haar integration measure leads to ‘Haar scrambling’ of the density matrix, and to the emergence of entanglement entropy. This entanglement entropy is determined by the Fock state probability distribution, and is thus directly related to the parton structure functions. As proposed earlier, at large rapidity η the hadron state becomes maximally entangled, and the entanglement entropy is S E ∼ η according to QCD evolution equations. When the phases of Fock state components are controlled, for example in spin asymmetry measurements, the Haar average cannot be performed, and the probabilistic parton description breaks down. This article is part of the theme issue ‘Quantum technologies in particle physics’.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeong Ryeol Choi

AbstractThe characteristics of nonstatic quantum light waves in the coherent state in a static environment is investigated. It is shown that the shape of the wave varies periodically as a manifestation of its peculiar properties of nonstaticity like the case of the Fock-state analysis for a nonstatic wave. A belly occurs in the graphic of wave evolution whenever the wave is maximally displaced in the quadrature space, whereas a node takes place every time the wave passes the equilibrium point during its oscillation. In this way, a belly and a node appear in turn successively. Whereas this change of wave profile is accompanied by the periodic variation of electric and magnetic energies, the total energy is conserved. The fluctuations of quadratures also vary in a regular manner according to the wave transformation in time. While the resultant time-varying uncertainty product is always larger than (or, at least, equal to) its quantum-mechanically allowed minimal value ($$\hbar /2$$ ħ / 2 ), it is smallest whenever the wave constitutes a belly or a node. The mechanism underlying the abnormal features of nonstatic light waves demonstrated here can be interpreted by the rotation of the squeezed-shape contour of the Wigner distribution function in phase space.


2021 ◽  
Vol 7 (48) ◽  
Author(s):  
Andrew Lingenfelter ◽  
David Roberts ◽  
A. A. Clerk
Keyword(s):  

Author(s):  
Atirach Ritboon ◽  
Lukáš Slodička ◽  
Radim Filip

Abstract The motion of trapped atoms plays an essential role in quantum mechanical sensing, simulations and computing. Small disturbances of atomic vibrations are still challenging to be sensitively detected. It requires a reliable coupling between individual phonons and internal electronic levels that light can readout. As available information in a few electronic levels about the phonons is limited, the coupling needs to be sequentially repeated to further harvest the remaining information. We analyze such phonon measurements on the simplest example of the force and heating sensing using motional Fock states. We prove that two sequential measurements are sufficient to reach sensitivity to force and heating for realistic Fock states and saturate the quantum Fisher information for a small amount of force or heating. It is achieved by the conventionally available Jaynes-Cummings coupling. The achieved sensitivities are found to be better than those obtained from classical states. Further enhancements are expectable when the higher Fock state generation is improved. The result opens additional applications of sequential phonon measurements of atomic motion. This measurement scheme can also be directly applied to other bosonic systems including cavity QED and circuit QED.


2021 ◽  
pp. 127592
Author(s):  
Shuai Wang ◽  
Jiandong Zhang ◽  
Xuexiang Xu
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sara Hassoul ◽  
Salah Menouar ◽  
Hamid Benseridi ◽  
Jeong Ryeol Choi

A quadratic invariant operator for general time-dependent three coupled nano-optomechanical oscillators is investigated. We show that the invariant operator that we have established satisfies the Liouville-von Neumann equation and coincides with its classical counterpart. To diagonalize the invariant, we carry out a unitary transformation of it at first. From such a transformation, the quantal invariant operator reduces to an equal, but a simple one which corresponds to three coupled oscillators with time-dependent frequencies and unit masses. Finally, we diagonalize the matrix representation of the transformed invariant by using a unitary matrix. The diagonalized invariant is just the same as the Hamiltonian of three simple oscillators. Thanks to such a diagonalization, we can analyze various dynamical properties of the nano-optomechanical system. Quantum characteristics of the system are investigated as an example, by utilizing the diagonalized invariant. We derive not only the eigenfunctions of the invariant operator, but also the wave functions in the Fock state.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 612
Author(s):  
Anna Delmonte ◽  
Alba Crescente ◽  
Matteo Carrega ◽  
Dario Ferraro ◽  
Maura Sassetti

We consider a quantum battery that is based on a two-level system coupled with a cavity radiation by means of a two-photon interaction. Various figures of merit, such as stored energy, average charging power, energy fluctuations, and extractable work are investigated, considering, as possible initial conditions for the cavity, a Fock state, a coherent state, and a squeezed state. We show that the first state leads to better performances for the battery. However, a coherent state with the same average number of photons, even if it is affected by stronger fluctuations in the stored energy, results in quite interesting performance, in particular since it allows for almost completely extracting the stored energy as usable work at short enough times.


Author(s):  
Niels Benedikter ◽  
Phan Thành Nam ◽  
Marcello Porta ◽  
Benjamin Schlein ◽  
Robert Seiringer

AbstractWe derive rigorously the leading order of the correlation energy of a Fermi gas in a scaling regime of high density and weak interaction. The result verifies the prediction of the random-phase approximation. Our proof refines the method of collective bosonization in three dimensions. We approximately diagonalize an effective Hamiltonian describing approximately bosonic collective excitations around the Hartree–Fock state, while showing that gapless and non-collective excitations have only a negligible effect on the ground state energy.


Sign in / Sign up

Export Citation Format

Share Document