symmetric tilt
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 40)

H-INDEX

30
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yaoshu Xie ◽  
Kiyou Shibata ◽  
Teruyasu Mizoguchi

Abstract One of the important issues of studying grain boundaries (GBs) which has recently attracted increasing interests is to investigate the phase behavior of GBs that one GB with determined disorientation and plane orientation (known as macroscopic parameters) can exist as distinct phases and perform phase transition. While such an issue has been investigated in fcc and bcc metals, GB phases in other elemental materials have not been reported. This work by applying molecular dynamics (MD) simulation explored totally around 7000 meta-stable GB phases of the <110>∑9(22‾1‾) symmetric tilt GB of silicon, germanium and diamond carbon as diamond-structured elemental materials. Meta-stable phases commonly exist in different elements were discovered and some of them were successfully verified to be reasonable by first-principle simulation. The verified meta-stable GBs were subsequently proved to have different capability to transform to the ground-stable GB at elevated temperature under MD simulation and to perform different pre-melting behaviors. We discovered a bi-directional structural reconstruction mechanism of the unit structure belonging to one of the verified meta-stable phases, by which the unit structures can transform to identical unit structures of the ground-stable GB which can present ‘opposite orientation’. Through computing the kinetic barriers by nudged-elastic-band and annealing simulation using MD, the integral behavior of the unit structures’ reconstruction is found to be a first-order like phase transition. Our work extended the research on GB phases from metals to diamond-structured materials and discovered a new GB phase transition mechanism which has not been reported before.


Author(s):  
Hong He ◽  
Shangyi Ma ◽  
Shaoqing Wang

Abstract The grain boundary energies (GBEs) of symmetric tilt grain boundaries (STGBs) and asymmetric tilt grain boundaries (ATGBs) for W at 0 and 2400 K and β-Ti at 1300 K were calculated by means of Molecular static method and Molecular dynamic simulations to investigate the effects of high temperature and grain boundary (GB) planes on the GBE. Generally, the variation trends of GBEs functioned with tilt angle are similar in the three cases when the tilt axis is specified. It is of course that these similarities result from their similar GB microstructures in most cases. However, the variation trends of β-Ti at 1300 K are somewhat different from that of W at 2400 K for STGBs with <100> and <110> tilt axes. This difference mainly stems from the following two reasons: firstly, the GB microstructures of W at 2400 K and β-Ti at 1300 K are different for some STGBs; secondly, the atoms at STGB of β-Ti at 1300 K tend to evolve into the local ω- or α-like structures distributed at STGBs, which make the corresponding STGBs more stable, thereby decreasing the GBEs. Furthermore, a geometric parameter θ, an angle between misorientation axis and GB plane, was defined to explore the effects of GB planes on GBEs. It was found that the relationship between GBEs and sin(θ) can be described by some simple functions of sin(θ) for the GBs with definite lattice misorientation, which can well explain and predict the preferred GB planes for the GBs with specific lattice misorientation. Our calculations not only extend the investigation of GBs to higher temperature, but also deepen the understanding on the temperature contribution to the microstructure evolution at GBs and on the relationship between GBE and possible geometric parameters.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4197
Author(s):  
Helena Zapolsky ◽  
Antoine Vaugeois ◽  
Renaud Patte ◽  
Gilles Demange

In the present work, atomistic modeling based on the quasiparticle approach (QA) was performed to establish general trends in the segregation of solutes with different atomic size at symmetric ⟨100⟩ tilt grain boundaries (GBs) in α-Fe. Three types of solute atoms X1, X2 and X3 were considered, with atomic radii smaller (X1), similar (X2) and larger (X3) than iron atoms, respectively, corresponding to phosphorus (P), antimony (Sb) and tin (Sn). With this, we were able to evidence that segregation is dominated by atomic size and local hydrostatic stress. For low angle GBs, where the elastic field is produced by dislocation walls, X1 atoms segregate preferentially at the limit between compressed and dilated areas. Contrariwise, the positions of X2 atoms at GBs reflect the presence of tensile and compressive areal regions, corresponding to extremum values of the σXX and σYY components of the strain tensor. Regarding high angle GBs Σ5 (310) (θ = 36.95°) and Σ29 (730), it was found that all three types of solute atoms form Fe9X clusters within B structural units (SUs), albeit being deformed in the case of larger atoms (X2 and X3). In the specific case of Σ29 (730) where the GB structure can be described by a sequence of |BC.BC| SUs, it was also envisioned that the C SU can absorb up to four X1 atoms vs. one X2 or X3 atom only. Moreover, a depleted zone was observed in the vicinity of high angle GBs for X2 or X3 atoms. The significance of this research is the development of a QA methodology capable of ascertaining the atomic position of solute atoms for a wide range of GBs, as a mean to highlight the impact of the solute atoms’ size on their locations at and near GBs.


2021 ◽  
Vol 5 (4) ◽  
Author(s):  
Md Mijanur Rahman ◽  
Fedwa El-Mellouhi ◽  
Othmane Bouhali ◽  
Charlotte S. Becquart ◽  
Normand Mousseau

Sign in / Sign up

Export Citation Format

Share Document