rhodococcus fascians
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 12)

H-INDEX

25
(FIVE YEARS 2)

2022 ◽  
Vol 4 (1) ◽  
Author(s):  
David Minich ◽  
Christopher Madden ◽  
Mauricio A. Navarro ◽  
Leo Glowacki ◽  
Kristen French-Kim ◽  
...  

Abstract Background Enteritis is a common cause of morbidity and mortality in lorikeets that can be challenging to diagnose and treat. In this study, we examine gut microbiota in two lorikeet flocks with enteritis (Columbus Zoo and Aquarium—CZA; Denver Zoo—DZ). Since 2012, the CZA flock has experienced repeated outbreaks of enteritis despite extensive diet, husbandry, and clinical modifications. In 2018, both CZA and DZ observed a spike in enteritis. Recent research has revealed that the gut microbiota can influence susceptibility to enteropathogens. We hypothesized that a dysbiosis, or alteration in the gut microbial community, was making some lorikeets more susceptible to enteritis, and our goal was to characterize this dysbiosis and determine the features that predicted susceptibility. Results We employed 16S rRNA sequencing to characterize the cloacal microbiota in lorikeets (CZA n = 67, DZ n = 24) over time. We compared the microbiota of healthy lorikeets, to lorikeets with enteritis, and lorikeets susceptible to enteritis, with “susceptible” being defined as healthy birds that subsequently developed enteritis. Based on sequencing data, culture, and toxin gene detection in intestinal contents, we identified Clostridium perfringens type A (CZA and DZ) and C. colinum (CZA only) at increased relative abundances in birds with enteritis. Histopathology and immunohistochemistry further identified the presence of gram-positive bacilli and C. perfringens, respectively, in the necrotizing intestinal lesions. Finally, using Random Forests and LASSO models, we identified several features (young age and the presence of Rhodococcus fascians and Pseudomonas umsongensis) associated with susceptibility to clostridial enteritis. Conclusions We identified C. perfringens type A and C. colinum associated with lorikeet necrohemorrhagic enteritis at CZA and DZ. Susceptibility testing of isolates lead to an updated clinical treatment plan which ultimately resolved the outbreaks at both institutions. This work provides a foundation for understanding gut microbiota features that are permissive to clostridial colonization and host factors (e.g. age, prior infection) that shape responses to infection.


2021 ◽  
Author(s):  
David Minich ◽  
Christopher Madden ◽  
Mauricio A. Navarro ◽  
Leo Glowacki ◽  
Kristen French-Kim ◽  
...  

AbstractBackgroundEnteritis is a common cause of morbidity and mortality in lorikeets that can be challenging to diagnose and treat. In this study, we examine gut microbiota in two lorikeet flocks with enteritis (Columbus Zoo and Aquarium – CZA; Denver Zoo - DZ). Since 2012, the CZA flock has experienced repeated outbreaks of enteritis despite extensive diet, husbandry, and clinical modifications. In 2018, both CZA and DZ observed a spike in enteritis. Recent research has revealed that the gut microbiota can influence susceptibility to enteropathogens. We hypothesized that a dysbiosis, or alteration in the gut microbial community, was making some lorikeets more susceptible to enteritis, and our goal was to characterize this dysbiosis and determine the features that predicted susceptibility.ResultsWe employed 16S rRNA sequencing to characterize the cloacal microbiota in lorikeets (CZA n = 67, DZ n = 24) over time. We compared the microbiota of healthy lorikeets, to lorikeets with enteritis, and lorikeets susceptible to enteritis, with “susceptible” being defined as healthy birds that subsequently developed enteritis. Based on sequencing data, culture, and toxin gene detection in intestinal contents, we identified Clostridium perfringens type A (CZA and DZ) and C. colinum (CZA only) at increased relative abundances in birds with enteritis. Histopathology and immunohistochemistry further identified the presence of gram-positive bacilli and C. perfringens, respectively, in the necrotizing intestinal lesions. Finally, using Random Forests and LASSO models, we identified several features (young age and the presence of Rhodococcus fascians and Pseudomonas umsongensis) associated with susceptibility to clostridial enteritis.ConclusionsWe identified C. perfringens type A and C. colinum associated with lorikeet necrohemorrhagic enteritis at CZA and DZ. Susceptibility testing of isolates lead to an updated clinical treatment plan which ultimately resolved the outbreaks at both institutions. This work provides a foundation for understanding gut microbiota features that are permissive to clostridial colonization and host factors (e.g. age, prior infection) that shape responses to infection.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 241
Author(s):  
Joon Moh Park ◽  
Jachoon Koo ◽  
Se Won Kang ◽  
Sung Hee Jo ◽  
Jeong Mee Park

Rhodococcus fascians is an important pathogen that infects various herbaceous perennials and reduces their economic value. In this study, we examined R. fascians isolates carrying a virulence gene from symptomatic lily plants grown in South Korea. Phylogenetic analysis using the nucleotide sequences of 16S rRNA, vicA, and fasD led to the classification of the isolates into four different strains of R. fascians. Inoculation of Nicotiana benthamiana with these isolates slowed root growth and resulted in symptoms of leafy gall. These findings elucidate the diversification of domestic pathogenic R. fascians and may lead to an accurate causal diagnosis to help reduce economic losses in the bulb market.


Author(s):  
Phouvilay Soulenthone ◽  
Yuya Tachibana ◽  
Miwa Suzuki ◽  
Tsukasa Mizuno ◽  
Yukari Ohta ◽  
...  
Keyword(s):  

Plant Disease ◽  
2020 ◽  
Author(s):  
Lim Yeon-Jeong ◽  
Hyun Gi Kong ◽  
Yong Hwan Lee ◽  
Hyun Ran Kim ◽  
Duck Hwan Park

Rhodococcus fascians is a bacterium that causes growth abnormalities such as leafy galls, fasciation, and shoot proliferation in many plants, including ornamental plants. In February 2020, the Animal and Plant Quarantine Agency of South Korea detected 492,000 contaminated lily bulbs using an in-house PCR test based on the R. fascians fasD gene, and subsequently 1.3 million imported bulbs were destroyed. Because no pathogen isolation was associated with this diagnosis, there has been great cultivator demanded for bacterial isolation evidence of lily bulb infection with pathogenic R. fascians. To isolate the causal bacterium of the PCR tests, we sampled leaf, stem, and bulb tissues from 130 lilies with growth abnormality symptoms, collected from 24 South Korean mass production lily farms from June to August 2020. Supernatants of the homogenized samples were spread on mD2 medium (Kado and Heskett 1970) and incubated at 28°C for 10 days. Yellow to orange colonies were isolated into pure culture on mD2. Total DNA was extracted from cultures grown in yeast extract broth (YEB) at 28°C for 24 hours with Wizard DNA prep kit (Promega, Madison, WI, USA). PCR was performed to test for pathogenicity genes fas (A,D, and R) and att (A and R) (Putnam and Miller 2007). Colonies that produced at least one amplicon from these pathogenicity genes were analyzed by partial 16s rRNA gene sequencing to determine the corresponding species. Three strains that were isolated from the bulbs of fasciated lilies from Wanju (35°56´22.1˝N; 127°08´52.0˝E), Gwacheon (37°26´51.6˝N; 127°00´11.8˝E), and Yeongwol (37°18´45.8˝N; 128°11´05.6˝E), or W1, G3, and Y5 strains, yielded PCR products of the expected size for fas and att genes with the primer sets published in Serdani et al. (2013) and developed in this study (attAF: 5'–CCCGGCTACACGCATTCGC-3', attAR: 5'-CGAACGCGGTGTGCAGGT-3' and attRF: 5'-AGTGTCCCGTCGGCGAG-3', attRR: 5'-CGCGGCAGATCGAAGTCCT-3'). Sequences of the three strains were deposited in Genbank for fasA (accession MW122940-942), fasD (G3:MW122935 and 936), and fasR (MW122937-939); all shared 98.3 - 100% nucleotide identity to corresponding sequences from phytopathogenic R. fascians A25f (CP049745.1 Protein_ID fasA:QII09280.1, fasD:QII09282.1, and fasR:QII09277.1). The attA and attR products were only present in G3 (attA: MW122943 and attR: MW122944) and resulted in 100% identity to those of A25f (CP049745.1 Protein_ID attA:QII09269.1, attR:QII09267.1). Partial 16s rRNA gene sequences were obtained (MW064131-133) and clustered with phytopathogenic R. fascians strains D188, A21d2, and A25f. Thus we concluded that strains (W1, G3, and Y5) corresponded to R. fascians. To test the pathogenicity of these three strains, 10 seeds of garden peas for each strain were inoculated at 108 CFU/ml according to Nikolaeva et al. (2009), and the length of the main stem of each seedling was calculated 22 days post-inoculation. Seedlings inoculated with G3 and Y5 resulted in a stunted phenotype with up to 40% height reduction (p ≤ 0.001) compared to non-inoculated seedlings. As for the seedlings inoculated with W1, they exhibited as much as 15% height reduction (p ≤ 0.001). Colonies were recovered from the inoculated seedlings, identity was confirmed through colony PCR for fas and att genes. To our knowledge, this is the first report of phytopathogenic R. fascians in lilies cultivated in South Korea.


2020 ◽  
Vol 9 (23) ◽  
Author(s):  
Sabrine Dhaouadi ◽  
Joe Win ◽  
Amira Hamdane Mougou ◽  
Adeline Harant ◽  
Sophien Kamoun ◽  
...  

ABSTRACT The draft genome sequences of plant-associated Rhodococcus spp. from Tunisia are reported here. Two Rhodococcus fascians strains were obtained from almond rootstocks, and one Rhodococcus kroppenstedtii strain was obtained from a pistachio tree. The fourth Rhodococcus sp. strain was isolated from an ornamental plant.


2020 ◽  
pp. 1-9
Author(s):  
Alessio Cimmino ◽  
Ana Bejarano ◽  
Marco Masi ◽  
Gerardo Puopolo ◽  
Antonio Evidente
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document