In order to solve the problems of the sudden loss of fluidity and low expansion rate of CAM I (cement asphalt mortar type I) in a construction site with high environmental temperature, this paper studies the effect of temperature on the fluidity, expansion ratio and pH value of CAM I. The mechanism of action was analyzed by IR (infrared spectrometry), SEM (scanning electron microscopy) and other test methods. The results showed that a high temperature accelerates aluminate formation in cement paste. Aluminate adsorbs emulsifiers leading to demulsification of emulsified asphalt, and wrapped on the surface of cement particles, this causes CAM I to lose its fluidity rapidly. The aluminum powder gasification reaction is inhibited, resulting in an abnormal change in the expansion ratio. Based on findings, the application of an appropriate amount of superplasticizers can effectively improve the workability and expansion characteristics of CAM I at a high temperature.