charge process
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 22)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bohdana Belan ◽  
Marek Daszkiewicz ◽  
Mariya Dzevenko ◽  
Beata Rożdżyńska-Kiełbik ◽  
Volodymyr Pavlyuk ◽  
...  

Abstract The crystal structures of Eu5Si3 and EuSi were studied in detail by X-ray single-crystal diffraction. The single crystals were selected from arc-melted and annealed samples. X-ray diffraction was performed at room temperature on an Oxford Diffraction X’calibur Atlas four-circle diffractometer (MoKα radiation). Eu5Si3 adopts the tetragonal Cr5B3-type: space group I4/mcm (# 140), Pearson code tI32, Z = 4, a = 7.9339(6), c = 15.308(2) Å. The compounds with equiatomic composition EuSi crystallize in the structure type TlI: space group Cmcm (# 63), Pearson code oS8, Z = 4, a = 4.6955(6), b = 11.1528(13), c = 3.9845(4) Å. The silicides Eu5Si3 and Li2Si form during electrochemical lithiation (charge process) of EuSi. The electrochemical process 5EuSi + 4Li+ + 4e − ↔ Eu5Si3 + 2Li2Si is reversible, and the discharge specific capacity at 1C rate reached 140 mAhg−1 and the Coulombic efficiency is 93%.


Ionics ◽  
2021 ◽  
Author(s):  
Jingdong Liu ◽  
Haiman Hu ◽  
Yuanhui Zheng
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhuolin Tang ◽  
Mengming Yuan ◽  
Huali Zhu ◽  
Guang Zeng ◽  
Jun Liu ◽  
...  

Nowadays, Li–CO2 batteries have attracted enormous interests due to their high energy density for integrated energy storage and conversion devices, superiorities of capturing and converting CO2. Nevertheless, the actual application of Li–CO2 batteries is hindered attributed to excessive overpotential and poor lifespan. In the past decades, catalysts have been employed in the Li–CO2 batteries and been demonstrated to reduce the decomposition potential of the as-formed Li2CO3 during charge process with high efficiency. However, as a representative of promising catalysts, the high costs of noble metals limit the further development, which gives rise to the exploration of catalysts with high efficiency and low cost. In this work, we prepared a K+ doped MnO2 nanowires networks with three-dimensional interconnections (3D KMO NWs) catalyst through a simple hydrothermal method. The interconnected 3D nanowires network catalysts could accelerate the Li ions diffusion, CO2 transfer and the decomposition of discharge products Li2CO3. It is found that high content of K+ doping can promote the diffusion of ions, electrons and CO2 in the MnO2 air cathode, and promote the octahedral effect of MnO6, stabilize the structure of MnO2 hosts, and improve the catalytic activity of CO2. Therefore, it shows a high total discharge capacity of 9,043 mAh g−1, a low overpotential of 1.25 V, and a longer cycle performance.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1479
Author(s):  
Min-Cheol Kim ◽  
Jung Hyun Song ◽  
Young-Woo Lee ◽  
Jung Inn Sohn

Lithium-air batteries (LABs) continue to receive attention as a promising power source because they possess a high theoretical energy density of 3436 Wh L−1. However, the remaining Li2O2 resulting from the irreversible decomposition of Li2O2 during the charge process is one of the key challenges so as to address the deterioration of the cycling performance of LABs. In this study, we propose and report a redox-mediated polymer catalyst (RPC) as a cathode catalyst being composed of LiI and poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with multi-wall carbon nanotubes (MWCNTs) as the cathode material. In the RPC, iodine molecules are chemically combined with the PVDF-HFP chain. The as-prepared RPC exhibits increased cycling performance by 194% and decreased overpotential by 21.1% at 0.1 mA cm−2 compared to the sample without LiI molecules. Furthermore, these results suggest that the RPC consisting of a polymer chain and redox mediators will be extensively utilized as highly efficient catalysts of LABs.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5729
Author(s):  
Chen Cheng ◽  
Manling Ding ◽  
Tianran Yan ◽  
Kehua Dai ◽  
Jing Mao ◽  
...  

P2-type sodium layered transition metal oxides have been intensively investigated as promising cathode materials for sodium-ion batteries (SIBs) by virtue of their high specific capacity and high operating voltage. However, they suffer from problems of voltage decay, capacity fading, and structural deterioration, which hinder their practical application. Therefore, a mechanistic understanding of the cationic/anionic redox activity and capacity fading is indispensable for the further improvement of electrochemical performance. Here, a prototype cathode material of P2-type Na0.6Mg0.3Mn0.7O2 is comprehensively investigated, which presents both cationic and anionic redox behaviors during the cycling process. By a combination of soft X-ray absorption spectroscopy and electroanalytical methods, we unambiguously reveal that only oxygen redox reaction is involved in the initial charge process, then both oxygen and manganese participate in the charge compensation in the following discharge process. In addition, a gradient distribution of Mn valence state from surface to bulk is disclosed, which could be mainly related to the irreversible oxygen activity during the charge process. Furthermore, we find that the average oxidation state of Mn is reduced upon extended cycles, leading to the noticeable capacity fading. Our results provide deeper insights into the intrinsic cationic/anionic redox mechanism of P2-type materials, which is vital for the rational design and optimization of advanced cathode materials for SIBs.


2020 ◽  
Vol 88 (4) ◽  
pp. 340-342 ◽  
Author(s):  
Omar Samuel MENDOZA-HERNANDEZ ◽  
Eiji HOSONO ◽  
Daisuke ASAKURA ◽  
Hirofumi MATSUDA ◽  
Minoru UMEDA ◽  
...  

2020 ◽  
Author(s):  
wenda wu ◽  
Jian Luo ◽  
Fang Wang ◽  
Bing Yuan ◽  
Tianbiao Liu

Aqueous organic redox flow batteries (AORFBs) have become increasing attractive for scalable energy storage. However, it remains challenging to develop high voltage, powerful AORFBs because of the lack of catholytes with high redox potential. Herein, we report methyl viologen dibromide (<b>[MV]Br<sub>2</sub></b>) as a facile self-trapping, bipolar redox electrolyte material for pH neutral redox flow battery applications. The formation of the <b>[MV](Br<sub>3</sub>)<sub>2</sub></b> complex was computationally predicted and experimentally confirmed. The low solubility <b>[MV](Br<sub>3</sub>)<sub>2</sub></b> complex in the catholyte during the battery charge process not only mitigates the crossover of charged tribromide species (Br<sub>3</sub><sup>-</sup>) and addresses the toxicity concern of volatile bromine simultaneously. A 1.53 V bipolar MV/Br AORFB delivered outstanding battery performance at pH neutral conditions, specifically, 100% total capacity retention, 133 mW/cm<sup>2</sup> power density, and 60% energy efficiency at 40 mA/cm<sup>2</sup>.


2020 ◽  
Author(s):  
wenda wu ◽  
Jian Luo ◽  
Fang Wang ◽  
Bing Yuan ◽  
Tianbiao Liu

Aqueous organic redox flow batteries (AORFBs) have become increasing attractive for scalable energy storage. However, it remains challenging to develop high voltage, powerful AORFBs because of the lack of catholytes with high redox potential. Herein, we report methyl viologen dibromide (<b>[MV]Br<sub>2</sub></b>) as a facile self-trapping, bipolar redox electrolyte material for pH neutral redox flow battery applications. The formation of the <b>[MV](Br<sub>3</sub>)<sub>2</sub></b> complex was computationally predicted and experimentally confirmed. The low solubility <b>[MV](Br<sub>3</sub>)<sub>2</sub></b> complex in the catholyte during the battery charge process not only mitigates the crossover of charged tribromide species (Br<sub>3</sub><sup>-</sup>) and addresses the toxicity concern of volatile bromine simultaneously. A 1.53 V bipolar MV/Br AORFB delivered outstanding battery performance at pH neutral conditions, specifically, 100% total capacity retention, 133 mW/cm<sup>2</sup> power density, and 60% energy efficiency at 40 mA/cm<sup>2</sup>.


Sign in / Sign up

Export Citation Format

Share Document