bond breakage
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 31)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Vol 82 ◽  
Author(s):  
E. R. Silva ◽  
E. L. Dall’Oglio ◽  
L. G. Vasconcelos ◽  
E. B. Morais

Abstract Shewanella xiamenensis G5-03 was observed to decolorize the azo dye Congo red in synthetic wastewater. The influence of some factors on the dye decolorization efficiency was evaluated. The optimal decolorization conditions were temperature 30-35 °C, pH 10.0, incubation time 10 h, and static condition. The kinetic of Congo red decolorization fitted to the Michaelis–Menten model (Vmax = 111.11 mg L-1 h-1 and Km = 448.3 mg L-1). The bacterium was also able to degrade benzidine, a product of azo bond breakage of the Congo red, which contributed to reduce the phytotoxicity. The ability of S. xiamenensis G5-03 for simultaneous decolorization and degradation of Congo red shows its potential application for the biological treatment of wastewaters containing azo dyes.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Kafa Khalaf Hammud

Toxicity is important factor to human and environment and can be tested in lab and by computerized models. ProTox-II is in Silico method to assess safety of chemicals to minimize risk health threating to human and other living organisms in nature. Taste of material is another character can be calculated in Silico model like virtualtaste. Here, first attempt of using two computerized methods and hypothetical partial degradation products of four toxics materials used to control agricultural productivity was carried out to predicate taste and toxicity characters. LD50, Toxicity Class, organ and end point toxicities, Tox21-Nuclear receptor signaling and stress response pathways of Chlorfenvinphos, Dichlofluanid, Fonofos, and Methacrifos with their hypothetical degradation products were calculated. Hypothetical degradation products were a results of (C-C, C-O, C-N, C-S, C-P, P-O, P-S, or N-S) bond breakage. The hypothesized degradation chemicals showed that most of them were with sour taste and their toxicity were less class compared to the parent compound but not to non-toxic material (Class 6, LD50 more than 5000 mg/kg). Also, they were structurally toxics and could be interact with molecular cellular target resulting than parent compound if they presented in required concentration.


2021 ◽  
Author(s):  
K.J. Jisha ◽  
Sunita Rajamani ◽  
Dharmendra Singh ◽  
Gyanendra Sharma ◽  
Ramesh L. Gardas

Abstract Ionic liquids (ILs) have found applications in the pretreatment of waste lignocellulosic biomass by interacting with the carbohydrate molecules present in the biomass materials. Pretreatment is essential before biomass conversion into valuable chemicals, fuels, and many other value-added products. This comparative study mainly focused on the pretreatment ability of four ILs having acetate or triflate as a common anion with different cations. Among various studied ILs, diazabicyclo[5.4.0]undec-7-ene (DBU)-based acidic ionic liquid when used as a dual solvocatalyst showed significant structural modifications of the rice straw (RS) sample, through C6-O bond breakage assisted by the tertiary nitrogen in DBU cation. Structural modifications due to the pretreatment were confirmed through SEM, PXRD, and FTIR analysis. The elemental analysis confirmed that carbon content in original RS is reduced to 29% and 20% upon ionothermal treatment of RS with IL at 90 °C and 120 °C, respectively. Additionally, TGA indicated that further pyrolysis could be easier with the pretreated rice straw yielding biochar up to 9% thereby reducing wastes. Conversion of RS was found to be 60 % which reduced marginally to 50 % after three cycles of recycling IL. The findings of this work provide the proof of concept that studied ILs with high thermal stability and recyclability should act as a potential solvocatalyst in sustainable pretreatment and other biomass applications.


2021 ◽  
Author(s):  
◽  
Shyamal Prasad

<p>Transient absorption spectroscopy has been employed to investigate three photo–active compounds; azobenzene, foldamer controlled by azobenzene, and oxazine. These compounds all have absorption in the ultra–violet regions responsible for their photo–active behavior. Due to this, the current transient absorption setup has been modified to extend the probing wavelength range to 320–650 nm, with the possibility of exciting the photo–active molecule in the ultra–violet.  Azobenzene is valuable in benchmarking and optimizing the transient absorption setup, it shows that the detection window has been extended out to 320 nm. By resolving the ground state bleach we have added support for the assignment of the final decay to thermalization in the ground state. Comparison of relaxation lifetime in acetonitrile and tetrahydrofuran shows no noticeable change in the photophysics of isomerization between the two solvents.  The foldamer family excited state relaxation is similar to azobenzene. There is an extension in the S₁ branching lifetime from 1.1 ps in azobenzene to 1.7 ps for foldamer 1 and 4.2 ps for foldamer 2. The separation of branching on the S₁ surface and relaxation through the S₁ to electronic ground state intersection was possible by comparison of azobenzene and foldamer family. The solvent effects show little difference for all members of the foldamer family expect for foldamer 2, suggesting that the dynamics of the azobenzene moiety are not affected by the larger macro–structure of the foldamer.  For oxazine it has been established, by varying solvent polarity, that isomerization happens through three states; bond breakage, transfer to a dark state, and the final photo–isomer. This is confirmed by further studies completed after the introduction of electron withdrawing fluorine atoms. Carbon–oxygen bond cleavage occurs on the picosecond timescale, with solvent dependent rotation occurring in hundreds of picoseconds. Fluorinated oxazine shows a strong solvent dependence with rotation suppressed for all but the most polar of solvents.</p>


2021 ◽  
Author(s):  
◽  
Shyamal Prasad

<p>Transient absorption spectroscopy has been employed to investigate three photo–active compounds; azobenzene, foldamer controlled by azobenzene, and oxazine. These compounds all have absorption in the ultra–violet regions responsible for their photo–active behavior. Due to this, the current transient absorption setup has been modified to extend the probing wavelength range to 320–650 nm, with the possibility of exciting the photo–active molecule in the ultra–violet.  Azobenzene is valuable in benchmarking and optimizing the transient absorption setup, it shows that the detection window has been extended out to 320 nm. By resolving the ground state bleach we have added support for the assignment of the final decay to thermalization in the ground state. Comparison of relaxation lifetime in acetonitrile and tetrahydrofuran shows no noticeable change in the photophysics of isomerization between the two solvents.  The foldamer family excited state relaxation is similar to azobenzene. There is an extension in the S₁ branching lifetime from 1.1 ps in azobenzene to 1.7 ps for foldamer 1 and 4.2 ps for foldamer 2. The separation of branching on the S₁ surface and relaxation through the S₁ to electronic ground state intersection was possible by comparison of azobenzene and foldamer family. The solvent effects show little difference for all members of the foldamer family expect for foldamer 2, suggesting that the dynamics of the azobenzene moiety are not affected by the larger macro–structure of the foldamer.  For oxazine it has been established, by varying solvent polarity, that isomerization happens through three states; bond breakage, transfer to a dark state, and the final photo–isomer. This is confirmed by further studies completed after the introduction of electron withdrawing fluorine atoms. Carbon–oxygen bond cleavage occurs on the picosecond timescale, with solvent dependent rotation occurring in hundreds of picoseconds. Fluorinated oxazine shows a strong solvent dependence with rotation suppressed for all but the most polar of solvents.</p>


2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Ki Woo Kim

AbstractElectron microscopy (EM) is an essential imaging method in biological sciences. Since biological specimens are exposed to radiation and vacuum conditions during EM observations, they die due to chemical bond breakage and desiccation. However, some organisms belonging to the taxa of bacteria, fungi, plants, and animals (including beetles, ticks, and tardigrades) have been reported to survive hostile scanning EM (SEM) conditions since the onset of EM. The surviving organisms were observed (i) without chemical fixation, (ii) after mounting to a precooled cold stage, (iii) using cryo-SEM, or (iv) after coating with a thin polymer layer, respectively. Combined use of these techniques may provide a better condition for preservation and live imaging of multicellular organisms for a long time beyond live-cell EM.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6166
Author(s):  
Serge Ismael Zida ◽  
Yue-Der Lin ◽  
Yit Lung Khung

While the sonochemical grafting of molecules on silicon hydride surface to form stable Si–C bond via hydrosilylation has been previously described, the susceptibility towards nucleophilic functional groups during the sonochemical reaction process remains unclear. In this work, a competitive study between a well-established thermal reaction and sonochemical reaction of nucleophilic molecules (cyclopropylamine and 3-Butyn-1-ol) was performed on p-type silicon hydride (111) surfaces. The nature of surface grafting from these reactions was examined through contact angle measurements, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Cyclopropylamine, being a sensitive radical clock, did not experience any ring-opening events. This suggested that either the Si–H may not have undergone homolysis as reported previously under sonochemical reaction or that the interaction to the surface hydride via a lone-pair electron coordination bond was reversible during the process. On the other hand, silicon back-bond breakage and subsequent surface roughening were observed for 3-Butyn-1-ol at high-temperature grafting (≈150 °C). Interestingly, the sonochemical reaction did not produce appreciable topographical changes to surfaces at the nano scale and the further XPS analysis may suggest Si–C formation. This indicated that while a sonochemical reaction may be indifferent towards nucleophilic groups, the surface was more reactive towards unsaturated carbons. To the best of the author’s knowledge, this is the first attempt at elucidating the underlying reactivity mechanisms of nucleophilic groups and unsaturated carbon bonds during sonochemical reaction of silicon hydride surfaces.


2021 ◽  
Vol 11 (18) ◽  
pp. 8751
Author(s):  
Arcady V. Dyskin ◽  
Elena Pasternak ◽  
Yuan Xu

In this paper, we consider two mechanisms capable of inducing strain localisation in particulate geomaterials in compression: the apparent negative stiffness and the incremental incompressibility caused by dilatancy. It is demonstrated that the apparent negative stiffness can be produced by the rotation of clusters of particles in the presence of compression. The clusters are formed by connecting the particles by the bonds that still remain intact in the process of bond breakage in compression. We developed a 2D isotropic model of incremental incompressibility showing that a single strain localisation zone is formed inclined at 45° to the direction of axial compressive loading. This mechanism of localisation was analysed through Particle Flow Code (PFC) 2D and 3D simulations. It is shown that, in the simulations, the peak stress (the onset of localisation) does correspond to the incremental Poisson’s ratio, reaching the critical values of 1 (in 2D) and 0.5 (in 3D).


Author(s):  
Yunjie Zhu ◽  
Yanan Shao ◽  
Min Wei ◽  
Kefu Yu ◽  
Yuanyuan Zhang ◽  
...  

Abstract Sulfate radical (•SO4−)-based advanced oxidation processes are widely used for wastewater treatment. This study explored the potential use of UV/persulfate (UV/PS) system for the degradation of 17β-estradiol (E2). The pH of the reaction system can affect the degradation rate of E2 by UV/PS and the optimum pH was 7.0; Br− and Cl− in water can promote the degradation rate, HCO3− has an inhibitory effect on the reaction, SO42− and cations (Na+, Mg2+, K+) have no effect on the degradation rate. The degradation of E2 by UV/PS was a mineralization process, with the mineralization rate reaching 90.97% at 8 h. E2 in the UV/PS system was mainly degraded by hydroxylation, deoxygenation, and hydrogenation. E2 reaction sites were mainly located on benzene rings, mainly carbonylation on quinary rings, and bond breakage between C10 and C5 resulted in the removal of benzene rings and carboxyl at C2 and C3 sites. In the presence of halogen ions, halogenated disinfection by-products were not formed in the degradation process of E2 by UV/PS. E2 in the UV/PS system could inhibit the formation of bromate. The results of this study suggest that UV/PS is a safe and reliable method to degrade E2.


Sign in / Sign up

Export Citation Format

Share Document