sintered metal
Recently Published Documents


TOTAL DOCUMENTS

412
(FIVE YEARS 37)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Ryo Sadahiro ◽  
Syota Nakayama ◽  
Shouhei Kawada ◽  
Masaaki Miyatake ◽  
Shinya Sasaki ◽  
...  

Aerostatic porous bearings have been applied widely in precision devices to achieve higher accuracy of motion. Conventional aerostatic porous bearings are made of porous graphite, porous ceramics or sintered metal porous material, having a thickness of several millimetres and a surface-restricted layer. However, during mass production of porous bearings, the time required for the production of the porous materials and the surface restriction treatment leads to an increase in the manufacturing time and cost of the porous bearings. Accordingly, to overcome this problem, an aerostatic porous bearing with a layer thickness of several hundred µm and a support member, manufactured using metal 3D printing technology, is proposed. In this study, the optimum conditions for manufacturing the proposed aerostatic porous bearings with a direct metal laser sintering method 3D printer were investigated, and characteristics of the prototype of the proposed bearings were investigated experimentally.


2021 ◽  
Vol 11 (22) ◽  
pp. 10590
Author(s):  
Alexander Smirnov ◽  
Evgeniya Smirnova ◽  
Anatoly Konovalov ◽  
Vladislav Kanakin

The paper shows the applicability of data on the evolution of the elastic modulus measured by the instrumented microindentation technique to the determination of accumulated damage in metal matrix composites (MMCs) under high temperature deformation. A composite with a V95 aluminum alloy matrix (the Russian equivalent of the 7075 alloy) and SiC reinforcing particles is used as the research material. The metal matrix composite was produced by powder technology. The obtained results show that, under macroscopic compression at temperatures ranging between 300 and 500 °C, the V95\10% SiC MMC has the best plasticity at 300 °C. At a deformation temperature of 500 °C, the plastic properties are significantly lower than those at 300 and 400 °C.


2021 ◽  
Vol 4 (9) ◽  
pp. 681-688
Author(s):  
Sarah Deumel ◽  
Albert van Breemen ◽  
Gerwin Gelinck ◽  
Bart Peeters ◽  
Joris Maas ◽  
...  

AbstractTo realize the potential of artificial intelligence in medical imaging, improvements in imaging capabilities are required, as well as advances in computing power and algorithms. Hybrid inorganic–organic metal halide perovskites, such as methylammonium lead triiodide (MAPbI3), offer strong X-ray absorption, high carrier mobilities (µ) and long carrier lifetimes (τ), and they are promising materials for use in X-ray imaging. However, their incorporation into pixelated sensing arrays remains challenging. Here we show that X-ray flat-panel detector arrays based on microcrystalline MAPbI3 can be created using a two-step manufacturing process. Our approach is based on the mechanical soft sintering of a freestanding absorber layer and the subsequent integration of this layer on a pixelated backplane. Freestanding microcrystalline MAPbI3 wafers exhibit a sensitivity of 9,300 µC Gyair–1 cm–2 with a μτ product of 4 × 10–4 cm2 V–1, and the resulting X-ray imaging detector, which has 508 pixels per inch, combines a high spatial resolution of 6 line pairs per millimetre with a low detection limit of 0.22 nGyair per frame.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4147
Author(s):  
Dorota Rylska ◽  
Grzegorz Sokolowski ◽  
Monika Lukomska-Szymanska

The aim of the study was to evaluate how heat processing used for dental porcelain firing influences the surface properties of sintered and casted CoCr alloy. Two CoCr alloys, Soft Metal LHK (milling in soft material and sintering) and MoguCera C (casting), were used for the study. The samples were examined using SEM–EDS before and after heat treatment. Next, corrosion examinations (Ecorr, jcorr, polarization curve, Ebr) were performed. Finally, the samples were evaluated under SEM. Based on the results, the following conclusions might be drawn: 1. Thermal treatment (porcelain firing) did not cause chemical impurities formation on the surface of CoCr alloy; 2. The sintered metal exhibited significantly higher corrosion resistance than the casted one due to its homogeneity of structure and chemical composition; 3. Heat treatment (porcelain firing) decreased the resistance of casted and sintered CoCr alloy to electrochemical corrosion. The reduction in corrosion resistance was significantly higher for the casted alloy than for the sintered alloy; 4. The corrosion resistance decrease might be due to an increased thickness and heterogeneity of oxide layers on the surface (especially for the casted alloy). The development of corrosion process started in the low-density areas of the oxide layers; 5. The sintered metal seems to be a favourable framework material for porcelain fused to metal crowns.


Author(s):  
Sanoop Thekkut ◽  
Maan Z. Kokash ◽  
Rajesh Sharma Sivasubramony ◽  
Yuki Kawana ◽  
Kabir Mirpuri ◽  
...  

Abstract The inelastic deformation properties of sintered metal nanoparticle joints are complicated by the inherent nanocrystalline and nanoporous structures as well as by dislocation networks formed in sintering or under cyclic loading. Creep rates of sintered nanocopper structures were found to be dominated by the diffusion of individual atoms or vacancies, while dislocation motion remained negligible up to stresses far above those of practical interest. Rapid sintering of one material led to unstable structures the creep of which could be strongly reduced by subsequent annealing or aging. Longer sintering of another material led to more stable structures, but creep rates could still be strongly enhanced by subsequent work hardening in mild cycling.


2021 ◽  
Vol 76 (1) ◽  
pp. 58-63
Author(s):  
E. Roliński ◽  
M. Woods

Abstract The mechanism of plasma nitriding include the formation of various active species generating nitrogen atoms reacting with the metal. Which species prevail in supplying nitrogen depends on nitriding conditions as well as the nature of the treated metal. Plasma nitriding of low-density powder metal (PM) products results in a formation of the layers whose thicknesses may depend on the gas pressure used for the process. Higher pressure can cause locally deeper penetration of the surface by active nitrogen species formed from ammonia compounds generated by the plasma. While a low processing pressure reduces this effect significantly. The formation mechanism of a locally thicker layer relies on the presence of open porosities in the surface as they can be penetrated by the ammonia species generated by the plasma. The same porosities cannot be penetrated by the ions of nitrogen formed at the same time since their mean free life is much shorter than that of ammonia species. ◼


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Osama M. Ibrahim ◽  
Abdullah A. Alazemi ◽  
Loai Ben Naji

AbstractThis study investigates the effects of Multistage Heat Treatment (MSHT) on the development of an oxide-scale layer on the surface of FeCrAl sintered-metal-fibers. The oxide-scale layer was developed using an MSHT cycle at 930 °C for 1 h, followed by 960 °C for 1 h, and finally at 990 °C for 2 h. In this study, three samples were considered: Sample 1 was kept without thermal oxidation, while Samples 2 and 3 were exposed to one and eighteen MSHT cycles. Thermo-gravimetric analyses show that the weight gain of the heat-treated sample slows with time, confirming the growth of the protective oxide-scale layer. Scanning electron microscope images, after one MSHT cycle, reveal nonuniform oxide-scale growth with platelet-like on the surface. After eighteen MSHT cycles, however, clumped particles formed on the surface of the fibers. Atomic force microscopy was utilized to study the surface topography of the fibers. The results show that MSHT increases the surface roughness, where the surface roughness of one and eighteen MSHT cycles are the same. The x-ray diffraction analyses of the baseline sample and the sample with one MSHT cycle show pattern peaks of crystalline Fe2CrAl. In contrast, the results of eighteen MSHT cycles displayed diffraction pattern peaks of crystalline Cr and stable α-Al2O3. In summary, the results of this study reveal the changing nature of the oxide-scale layer. The findings of this study form the foundation for new techniques to protect and prepare the FeCrAl fibers as a support for catalysts.


Sign in / Sign up

Export Citation Format

Share Document