virtual knot
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 21)

H-INDEX

16
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
Amrendra Gill ◽  
Maxim Ivanov ◽  
Madeti Prabhakar ◽  
Andrei Vesnin

F-polynomials for virtual knots were defined by Kaur, Prabhakar and Vesnin in 2018 using flat virtual knot invariants. These polynomials naturally generalize Kauffman’s affine index polynomial and use smoothing in the classical crossing of a virtual knot diagram. In this paper, we introduce weight functions for ordered orientable virtual and flat virtual links. A flat virtual link is an equivalence class of virtual links with respect to a local symmetry changing a type of classical crossing in a diagram. By considering three types of smoothing in classical crossings of a virtual link diagram and suitable weight functions, there is provided a recurrent construction for new invariants. It is demonstrated by explicit examples that newly defined polynomial invariants are stronger than F-polynomials.


Author(s):  
Hans U. Boden ◽  
Micah Chrisman

We use the Bar-Natan [Formula: see text]-correspondence to identify the generalized Alexander polynomial of a virtual knot with the Alexander polynomial of a two component welded link. We show that the [Formula: see text]-map is functorial under concordance, and also that Satoh’s Tube map (from welded links to ribbon knotted tori in [Formula: see text]) is functorial under concordance. In addition, we extend classical results of Chen, Milnor and Hillman on the lower central series of link groups to links in thickened surfaces. Our main result is that the generalized Alexander polynomial vanishes on any knot in a thickened surface which is virtually concordant to a homologically trivial knot. In particular, this shows that it vanishes on virtually slice knots. We apply it to complete the calculation of the slice genus for virtual knots with four crossings and to determine non-sliceness for a number of 5-crossing and 6-crossing virtual knots.


2021 ◽  
Vol 30 (07) ◽  
Author(s):  
Qingying Deng ◽  
Xian’an Jin ◽  
Louis H. Kauffman

In this paper, we give two new criteria of detecting the checkerboard colorability of virtual links by using the odd writhe and the arrow polynomial of virtual links, respectively. As a result, we prove that 6 virtual knots are not checkerboard colorable, leaving only one virtual knot whose checkerboard colorability is unknown among all virtual knots up to four classical crossings.


Author(s):  
Sandy Ganzell ◽  
Allison Henrich

Mosaic diagrams for knots were first introduced in 2008 by Lomanoco and Kauffman for the purpose of building a quantum knot system. Since then, many others have explored the structure of these knot mosaic diagrams, as they are interesting objects of study in their own right. Knot mosaics have been generalized by Garduño to virtual knots, by including an additional tile type to represent virtual crossings. There is another interpretation of virtual knots, however, as knot diagrams on surfaces, which inspires this work. By viewing classical mosaic diagrams as [Formula: see text]-gons and gluing edges of these polygons, we obtain knots on surfaces that can be viewed as virtual knots. These virtual mosaics are our present objects of study. In this paper, we provide a set of moves that can be performed on virtual mosaics that preserve knot and link type, we show that any virtual knot or link can be represented as a virtual mosaic, and we provide several computational results related to virtual mosaic numbers for small classical and virtual knots.


Author(s):  
Zhiyun Cheng ◽  
Denis A. Fedoseev ◽  
Hongzhu Gao ◽  
Vassily O. Manturov ◽  
Mengjian Xu

We give a brief survey of virtual knot invariants derived from chord parity or chord index. These invariants have grown into an area in its own right due to rapid developing in the last decade. Several similar invariants of flat virtual knots and free knots are also discussed.


2020 ◽  
pp. 107552
Author(s):  
Valeriy Bardakov ◽  
Timur Nasybullov
Keyword(s):  

2020 ◽  
Vol 29 (12) ◽  
pp. 2050088
Author(s):  
Jhon Jader Mira-Albanés ◽  
José Gregorio Rodríguez-Nieto ◽  
Olga Patricia Salazar-Díaz

In this paper we introduce the special rank for virtual knots and some properties of this number are studied. Although we do not know if it can be considered as a nontrivial extension of the meridional rank given by [H. U. Boden and A. I. Gaudreau, Bridge number for virtual and welded knots, J. Knot Theory Ramifications 24 (2015), Article ID: 1550008] and by [M. Boileau and B. Zimmermann, The [Formula: see text]-orbifold group of a link, Math. Z. 200 (1989) 187–208], we prove that classical knots with special rank [Formula: see text] are [Formula: see text]-bridge knots. Therefore, a modified version of the so called Cappell and Shaneson conjecture could be considered.


2020 ◽  
Vol 29 (12) ◽  
pp. 2050073
Author(s):  
Joonoh Kim

In this study, we describe a method of making an invariant of virtual knots defined in terms of an integer labeling of the flat virtual knot diagram. We give an invariant of flat virtual knots and virtual doodles modifying the previous invariant.


2020 ◽  
Vol 29 (10) ◽  
pp. 2042008
Author(s):  
Amrendra Gill ◽  
Madeti Prabhakar ◽  
Andrei Vesnin

Gordian complex of knots was defined by Hirasawa and Uchida as the simplicial complex whose vertices are knot isotopy classes in [Formula: see text]. Later Horiuchi and Ohyama defined Gordian complex of virtual knots using [Formula: see text]-move and forbidden moves. In this paper, we discuss Gordian complex of knots by region crossing change and Gordian complex of virtual knots by arc shift move. Arc shift move is a local move in the virtual knot diagram which results in reversing orientation locally between two consecutive crossings. We show the existence of an arbitrarily high-dimensional simplex in both the Gordian complexes, i.e. by region crossing change and by the arc shift move. For any given knot (respectively, virtual knot) diagram we construct an infinite family of knots (respectively, virtual knots) such that any two distinct members of the family have distance one by region crossing change (respectively, arc shift move). We show that the constructed virtual knots have the same affine index polynomial.


Sign in / Sign up

Export Citation Format

Share Document