collimation system
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 18)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 11 (8) ◽  
pp. 3620 ◽  
Author(s):  
Sebastian Jaksch ◽  
Alexis Chennevière ◽  
Sylvain Désert ◽  
Tadeusz Kozielewski ◽  
Herbert Feilbach ◽  
...  

Small-K Advanced DIffractometer (SKADI is a Small-Angle Neutron Scattering (SANS) instrument to be constructed at the European Spallation Source (ESS). SANS instruments allow investigations of the structure of materials in the size regime between Angstroms up to micrometers. As very versatile instruments, they usually cater to the scientific needs of communities, such as chemists, biologists, and physicists, ranging from material and food sciences to archeology. They can offer analysis of the micro- and mesoscopic structure of the samples, as well as an analysis of the spin states in the samples, for example, for magnetic samples. SKADI, as a broad range instrument, thus offers features, such as an extremely flexible space for the sample environment, to accommodate a wide range of experiments, high-flux, and optimized detector-collimation system to allow for an excellent resolution of the sample structure, short measurement times to be able to record the internal kinetics during a transition in the sample, as well as polarized neutron scattering. In this manuscript, we describe the final design for the construction of SKADI. All of the features and capabilities presented here are projected to be included into the final instrument when going into operation phase.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
S. Redaelli ◽  
M. Butcher ◽  
C. Barreto ◽  
R. Losito ◽  
A. Masi ◽  
...  

AbstractPlanar channeling in bent crystals has been observed in LHC with multi-TeV proton beam in 2015. Two crystals, mounted on novel high-accuracy goniometers (one in the horizontal and one in the vertical plane), are integrated in the LHC collimation system, for studying the feasibility of the crystal-based collimation scheme. Using this experimental setup, tests with fully-stripped lead ion beams at both 450 Z and 6500 Z GeV were carried during dedicated LHC beam time. Planar channeling was observed for the first time with lead ions at these unprecedented energies surpassing by more than 1 order of magnitude the previous state-of-the-art for lead heavy ions and providing an important experimental basis for future applications of bent crystals in beam manipulations. The set of measurements performed to confirm this observation, as the local loss reduction in presence of channeling and the evidence of a deflected beam downstream of the crystal, are presented.


2020 ◽  
Vol 47 (10) ◽  
pp. 5343-5356
Author(s):  
Blake R. Smith ◽  
Mark Pankuch ◽  
Daniel E. Hyer ◽  
Wesley S. Culberson

2020 ◽  
Vol 10 (15) ◽  
pp. 5057
Author(s):  
Chuang Sun ◽  
Sheng Cai ◽  
Yusheng Liu ◽  
Yanfeng Qiao

A compact laser collimation system is presented for the simultaneous measurement of five-degree-of-freedom motion errors. The optical configuration of the proposed system is designed, and the principle of the measurement of five-degree-of-freedom errors is described in detail. The resolution of the roll and the horizontal straightness is doubled compared with other laser collimation methods. A common optical path compensation method is provided to detect light drift in real time and compensate for straightness and angle errors. An experimental setup is constructed, and a series of experiments are performed to verify the feasibility and stability of the system. Compared with commercial instruments, the pitch and yaw residuals are ± 2.5 ″ and ± 3.5 ″ without correction, and the residuals are ± 1.9 ″ and ± 2.8 ″ after correction, respectively. The comparison deviations of the horizontal straightness and vertical straightness changed from ± 4.8   μ m to ± 2.8 μm and ± 5.9 μm to ± 3.6 μm, respectively. The comparison deviation of the roll is ± 4.3 ″ . The experimental results show that the data of the five-degree-of-freedom measurement system obtained are largely the same as the measurement data of commercial instruments. The common optical path compensation can effectively improve the measurement accuracy of the system.


2020 ◽  
Vol 56 (2) ◽  
pp. 171-178
Author(s):  
E. E. Zhuravskii ◽  
B. I. Kapranov ◽  
D. S. Belkin ◽  
S. V. Chakhlov ◽  
A. M. Shtein

Sign in / Sign up

Export Citation Format

Share Document