dye tracer
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 17)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brandon C. Shell ◽  
Yuan Luo ◽  
Scott Pletcher ◽  
Mike Grotewiel

AbstractThe Drosophila model is used to investigate the effects of diet on physiology as well as the effects of genetic pathways, neural systems and environment on feeding behavior. We previously showed that Blue 1 works well as a dye tracer to track consumption of agar-based media in Drosophila in a method called Con-Ex. Here, we describe Orange 4 as a novel dye for use in Con-Ex studies that expands the utility of this method. Con-Ex experiments using Orange 4 detect the predicted effects of starvation, mating status, strain, and sex on feeding behavior in flies. Orange 4 is consumed and excreted into vials linearly with time in Con-Ex experiments, the number of replicates required to detect differences between groups when using Orange 4 is comparable to that for Blue 1, and excretion of the dye reflects the volume of consumed dye. In food preference studies using Orange 4 and Blue 1 as a dye pair, flies decreased their intake of food laced with the aversive tastants caffeine and NaCl as determined using Con-Ex or a more recently described modification called EX-Q. Our results indicate that Orange 4 is suitable for Con-Ex experiments, has comparable utility to Blue 1 in Con-Ex studies, and can be paired with Blue 1 to assess food preference via both Con-Ex and EX-Q.


2021 ◽  
pp. 004051752110417
Author(s):  
Keiko Sugita ◽  
Masaru Oya

The stain quantification method using image analysis is excellent because it is non-destructive and applicable for non-uniformly adhered stains. The technique is difficult to adapt to colorless stains, but can be used by coloring the stains. However, low-polarity oils have poor compatibility even with oil-soluble dyes, and it is difficult to accurately quantify them from the appearance. The purpose of this paper is to examine the quantification of low-polarity oily stains by three methods: (1) search for a dye tracer suitable for non-polar oil; (2) use an ultraviolet (UV) image by mixing a fluorescent tracer; and (3) use an UV image using a model stain that absorbs UV rays. In the experiment, the soiled samples were prepared by dropping soiling liquid on a cotton fabric and washing with a tergotometer, and the cleaning efficiency was determined from the image obtained with a digital camera. Results showed that Elixa Red 348 with lower polarity than Sudan IV and Oil Red O is superior as a dye tracer for non-polar oil. In the fluorescence tracer method, the sum of G values (Σ G) in the red, green, blue signals of the image data can be used, but the decrease in fluorescence over time is a problem in the case of pyrene. It was also found that UV-absorbing stains such as alkylbenzene can be quantified from UV images by utilizing the slight fluorescence coloration of cotton fabric generated under 254 nm UV irradiation. The future potential of image analysis methods for quantifying non-polar oily stains was suggested.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1301
Author(s):  
Mingfeng Li ◽  
Jingjing Yao ◽  
Ru Yan ◽  
Jinhua Cheng

Preferential flow has an important role as it strongly influences solute transport in forest soil. The quick passage of water and solutes through preferential flow paths without soil absorption results in considerable water loss and groundwater pollution. However, preferential flow and solute transport under different infiltration volumes in southwestern China remain unclear. Three plots, named P20, P40 and P60, were subjected to precipitation amounts of 20, 40 and 60 mm, respectively, to investigate preferential flow and solute transport characteristics via field multiple-tracer experiments. Stained soils were collected to measure Br− and NO3− concentrations. This study demonstrated that precipitation could promote dye tracer infiltration into deep soils. The dye tracer reached the maximum depth of 40 cm in P60. Dye coverage generally reduced with greater depth, and sharp reductions were observed at the boundary of matrix flow and preferential flow. Dye coverage peaked at the soil depth of 15 cm in P40. This result demonstrated that lateral infiltration was enhanced. The long and narrow dye coverage pattern observed in P60 indicated the occurrence of macropore flow. Br− and NO3− were found at each soil depth where preferential flow had moved. Increasing precipitation amounts increased Br− and NO3− concentration and promoted solute movement into deep soil layers. Solute concentration peaked at near the end of the preferential flow path and when preferential flow underwent lateral movement. These results indicated that the infiltration volume and transport capacity of preferential flow had important effects on the distribution of Br− and NO3− concentrations. The results of this study could help expand our understanding of the effects of preferential flow on solute transport and provide some suggestions for protection forest management in southwestern China.


Geoderma ◽  
2021 ◽  
Vol 390 ◽  
pp. 114975
Author(s):  
Viktor Polyakov ◽  
Li Li ◽  
Mark A. Nearing

Ground Water ◽  
2020 ◽  
Author(s):  
Ryan N. Cascarano ◽  
Donald M. Reeves ◽  
Mark A. Henry

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3489
Author(s):  
Mingfeng Li ◽  
Jingjing Yao ◽  
Jinhua Cheng

Understanding the response of preferential flow paths to water movement is an important topic in soil hydrology. However, quantification of the complicated distribution patterns of preferential flow paths remains poorly understood. Therefore, dye experiments were conducted to investigate preferential flow characteristics under three different precipitation amounts (20, 40 and 60 mm, numbered as the G20, G40 and G60, respectively) in Simian Mountain grassland, Chongqing province, China. O-ring statistics were used to analyze the spatial distribution characteristics and the spatial correlation of preferential flow paths. Results revealed that precipitation could promote dye tracer infiltration into deeper soils, reaching the maximum depth of 55 cm in G60. The number of preferential flow paths in G60 plots was 3.0 and 7.4 times greater than those of G40 and G20, respectively. Structural distribution of the preferential flow paths showed a gradually clumped pattern with the increase of precipitation, which was conducive to enhancing the correlation between preferential flow paths in each pore size range. These results could expand our understanding of the effects of precipitation on the characteristic of preferential flow paths in grassland, which is helpful to evaluate the water movement in the study area.


Geoderma ◽  
2020 ◽  
Vol 380 ◽  
pp. 114699
Author(s):  
Vilim Filipović ◽  
Jasmina Defterdarović ◽  
Jiří Šimůnek ◽  
Lana Filipović ◽  
Gabrijel Ondrašek ◽  
...  

2020 ◽  
Vol 24 (6) ◽  
pp. 3271-3288
Author(s):  
Anne Hartmann ◽  
Ekaterina Semenova ◽  
Markus Weiler ◽  
Theresa Blume

Abstract. Preferential flow strongly controls water flow and transport in soils. It is ubiquitous but difficult to characterize and predict. This study addresses the occurrence and the evolution of preferential flow during the evolution of landscapes and here specifically during the evolution of hillslopes. We targeted a chronosequence of glacial moraines in the Swiss Alps to investigate how water flow paths evolve along with the soil-forming processes. Dye tracer irrigation experiments with a Brilliant Blue FCF solution (4 g L−1) were conducted on four moraines of different ages (30, 160, 3000, and 10 000 years). At each moraine, three dye tracer experiments were conducted on plots of 1.5 m ×1.0 m. The three plots at each moraine were characterized by different vegetation complexities (low, medium, and high). Each plot was further divided into three equal subplots for the application of three different irrigation amounts (20, 40, and 60 mm) with an average irrigation intensity of 20 mm h−1. The day after the experiment five vertical soil sections were excavated, and the stained flow paths were photographed. Digital image analysis was used to derive average infiltration depths and flow path characteristics such as the volume and surface density of the dye patterns. Based on the volume density, the observed dye patterns were assigned to specific flow type categories. The results show a significant change in the type of preferential flow paths along the chronosequence. The flow types change from a rather homogeneous matrix flow in coarse material with high conductivities and a sparse vegetation cover at the youngest moraine to a heterogeneous infiltration pattern at the medium-age moraines. Heterogeneous matrix and finger flow are dominant at these intermediate age classes. At the oldest moraine only macropore flow via root channels was observed in deeper parts of the soil, in combination with a very high water storage capacity of the organic top layer and low hydraulic conductivity of the deeper soil. In general, we found an increase in water storage with increasing age of the moraines, based on our observations of the reduction in infiltration depth as well as laboratory measurements of porosity. Preferential flow is, however, not only caused by macropores, but especially for the medium-age moraine, it seems to be mainly initiated by soil surface characteristics (vegetation patches and microtopography).


Sign in / Sign up

Export Citation Format

Share Document