predictive algorithms
Recently Published Documents


TOTAL DOCUMENTS

268
(FIVE YEARS 151)

H-INDEX

19
(FIVE YEARS 7)

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 221
Author(s):  
Nicole Morresi ◽  
Sara Casaccia ◽  
Marco Arnesano ◽  
Gian Marco Revel

This paper presents an approach to assess the measurement uncertainty of human thermal comfort by using an innovative method that comprises a heterogeneous set of data, made by physiological and environmental quantities, and artificial intelligence algorithms, using Monte Carlo method (MCM). The dataset is made up of heart rate variability (HRV) features, air temperature, air velocity and relative humidity. Firstly, MCM is applied to compute the measurement uncertainty of the HRV features: results have shown that among 13 participants, there are uncertainty values in the measurement of HRV features that ranges from ±0.01% to ±0.7 %, suggesting that the uncertainty can be generalized among different subjects. Secondly, MCM is applied by perturbing the input parameters of random forest (RF) and convolutional neural network (CNN) algorithm, trained to measure human thermal comfort. Results show that environmental quantities produce different uncertainty on the thermal comfort: RF has the highest uncertainty due to the air temperature (14 %), while CNN has the highest uncertainty when relative humidity is perturbed (10.5 %). A sensitivity analysis also shows that air velocity is the parameter that causes a higher deviation of thermal comfort


Author(s):  
Natasha R.F. Novaes ◽  
Isabel C. M. Fensterseifer ◽  
José L. R. Martins ◽  
Osmar N. Silva

Forensic Science compounds many study areas in context of solving crimes, one of which is the forensic microbiology. Combined with genomic approaches, microbiology has shown strong performance in studies regarding the relationship between microorganisms present on human skin and environment. The Human Microbiome Project (HMP) has contributed significantly to characterization of microbial complexity and their connection to human being. The purpose of this work consists of a historical overview of scientific articles, demonstrating the growth and possibility of using skin microbiome in forensic identification. Studies about use of cutaneous microbiome in human identification, as well its forensic approaches, were looked into for writing of this review. Comparisons among cutaneous microbial communities and manipulated objects have been tested using 16S rRNA, as well as a thorough sequencing of the bacterial genome. From use of ecological measures of distance to genetic markers with nucleotide variants and predictive algorithms, research has shown promising results for advances in field of forensic identification. The development of metagenomic microbial panel markers, named hidSkinPlax for targeted sequencing has been designed and tested with great results. Research results show satisfactory potential in human identification by cutaneous microbiome and the possibility for contributive use in elucidating crimes.


2021 ◽  
Author(s):  
John Körtner ◽  
Giuliano Bonoli

With the growing availability of digital administrative data and the recent advances in machine learning, the use of predictive algorithms in the delivery of labour market policy is becoming more prevalent. In public employment services (PES), predictive algorithms are used to support the classification of jobseekers based on their risk of long-term unem- ployment (profiling), the selection of beneficial active labour market programs (targeting), and the matching of jobseekers to suitable job opportunities (matching). In this chapter, we offer a conceptual introduction to the applications of predictive algorithms for the different functions PES have to fulfil and review the history of their use up to the current state of the practice. In addition, we discuss two issues that are inherent to the use of predictive algorithms: algorithmic fairness concerns and the importance of considering how caseworkers will interact with algorithmic systems and make decisions based on their predictions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Havala O. T. Pye ◽  
Cavin K. Ward-Caviness ◽  
Ben N. Murphy ◽  
K. Wyat Appel ◽  
Karl M. Seltzer

AbstractFine particle pollution, PM2.5, is associated with increased risk of death from cardiorespiratory diseases. A multidecadal shift in the United States (U.S.) PM2.5 composition towards organic aerosol as well as advances in predictive algorithms for secondary organic aerosol (SOA) allows for novel examinations of the role of PM2.5 components on mortality. Here we show SOA is strongly associated with county-level cardiorespiratory death rates in the U.S. independent of the total PM2.5 mass association with the largest associations located in the southeastern U.S. Compared to PM2.5, county-level variability in SOA across the U.S. is associated with 3.5× greater per capita county-level cardiorespiratory mortality. On a per mass basis, SOA is associated with a 6.5× higher rate of mortality than PM2.5, and biogenic and anthropogenic carbon sources both play a role in the overall SOA association with mortality. Our results suggest reducing the health impacts of PM2.5 requires consideration of SOA.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matteo Gadaleta ◽  
Jennifer M. Radin ◽  
Katie Baca-Motes ◽  
Edward Ramos ◽  
Vik Kheterpal ◽  
...  

AbstractIndividual smartwatch or fitness band sensor data in the setting of COVID-19 has shown promise to identify symptomatic and pre-symptomatic infection or the need for hospitalization, correlations between peripheral temperature and self-reported fever, and an association between changes in heart-rate-variability and infection. In our study, a total of 38,911 individuals (61% female, 15% over 65) have been enrolled between March 25, 2020 and April 3, 2021, with 1118 reported testing positive and 7032 negative for COVID-19 by nasopharyngeal PCR swab test. We propose an explainable gradient boosting prediction model based on decision trees for the detection of COVID-19 infection that can adapt to the absence of self-reported symptoms and to the available sensor data, and that can explain the importance of each feature and the post-test-behavior for the individuals. We tested it in a cohort of symptomatic individuals who exhibited an AUC of 0.83 [0.81–0.85], or AUC = 0.78 [0.75–0.80] when considering only data before the test date, outperforming state-of-the-art algorithm in these conditions. The analysis of all individuals (including asymptomatic and pre-symptomatic) when self-reported symptoms were excluded provided an AUC of 0.78 [0.76–0.79], or AUC of 0.70 [0.69–0.72] when considering only data before the test date. Extending the use of predictive algorithms for detection of COVID-19 infection based only on passively monitored data from any device, we showed that it is possible to scale up this platform and apply the algorithm in other settings where self-reported symptoms can not be collected.


AI ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 621-635
Author(s):  
Vincent Margot ◽  
George Luta

Interpretability is becoming increasingly important for predictive model analysis. Unfortunately, as remarked by many authors, there is still no consensus regarding this notion. The goal of this paper is to propose the definition of a score that allows for quickly comparing interpretable algorithms. This definition consists of three terms, each one being quantitatively measured with a simple formula: predictivity, stability and simplicity. While predictivity has been extensively studied to measure the accuracy of predictive algorithms, stability is based on the Dice-Sorensen index for comparing two rule sets generated by an algorithm using two independent samples. The simplicity is based on the sum of the lengths of the rules derived from the predictive model. The proposed score is a weighted sum of the three terms mentioned above. We use this score to compare the interpretability of a set of rule-based algorithms and tree-based algorithms for the regression case and for the classification case.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2901
Author(s):  
Lilia Muñoz ◽  
Vladimir Villarreal ◽  
Mel Nielsen ◽  
Yen Caballero ◽  
Inés Sittón-Candanedo ◽  
...  

The rapid spread of SARS-CoV-2 and the consequent global COVID-19 pandemic has prompted the public administrations of different countries to establish health procedures and protocols based on information generated through predictive techniques and models, which, in turn, are based on technology such as artificial intelligence (AI) and machine learning (ML). This article presents some AI tools and computational models used to collaborate in the control and detection of COVID-19 cases. In addition, the main features of the Epidempredict project regarding COVID-19 in Panama are presented. This initiative consists of the planning and design of a digital platform, with cloud-based technology, to manage the ingestion, analysis, visualization and exportation of data regarding the evolution of COVID-19 in Panama. The methodology for the design of predictive algorithms is based on a hybrid model that combines the dynamics associated with population data of an SIR model of differential equations and extrapolation with recurrent neural networks. The technological solution developed suggests that adjustments can be made to the rules implemented in the expert processes that are considered. Furthermore, the resulting information is displayed and explored through user-friendly dashboards, contributing to more meaningful decision-making processes.


Author(s):  
Katia Schwerzmann

AbstractIn this article, I show why it is necessary to abolish the use of predictive algorithms in the US criminal justice system at sentencing. After presenting the functioning of these algorithms in their context of emergence, I offer three arguments to demonstrate why their abolition is imperative. First, I show that sentencing based on predictive algorithms induces a process of rewriting the temporality of the judged individual, flattening their life into a present inescapably doomed by its past. Second, I demonstrate that recursive processes, comprising predictive algorithms and the decisions based on their predictions, systematically suppress outliers and progressively transform reality to match predictions. In my third and final argument, I show that decisions made on the basis of predictive algorithms actively perform a biopolitical understanding of justice as management and modulation of risks. In such a framework, justice becomes a means to maintain a perverse social homeostasis that systematically exposes disenfranchised Black and Brown populations to risk.


Sign in / Sign up

Export Citation Format

Share Document