hematologic neoplasm
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 14)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Paula de Oliveira Montandon Hokama ◽  
Newton Key Hokama ◽  
Adriana Lúcia Mendes ◽  
Vania dos Santos Nunes-Nogueira

Abstract Background: Patients with hematologic neoplasm may have compromised immunity due to their malignancy and/or treatment, and may be at elevated risk of severe COVID-19. However, the studies bring together patients with hematologic neoplasms and solid tumors into a single group, making no distinction about the types of hematological tumors and their treatments. This systematic review is designed to explore the risk of severe COVID-19 in patients with hematologic neoplasm. Studies about patients, adult or children, with hematologic neoplasm and COVID-19 will be included. Methods: A systematic review according to Joanna Briggs Institute methodology for systematic reviews of etiology and risk will be performed. The review will consider as participants adults or children with COVID-19 infection detected by RT-PCR or serology (SARS-CoV-2 antibody). We will be included studies without routine labs confirmation of COVID-19 if the patients presented clinical/physical exam and computed tomography suggesting COVID-19. The exposure of interest will be hematologic neoplasm, which include lymphomas, acute and chronic leukemias, myeloma, myelodysplastic syndrome, and myeloproliferative diseases. We will consider cohort, case-control, analytical cross-sectional studies. Outcomes among patients with COVID-19 are critical symptoms, hospitalizations, intensive care unit admissions, mechanical ventilation and deaths. We will exclude studies with other neoplasms than hematologic neoplasms. Search strategies have been created for the Embase, Medline and LILACS. Two reviewers independently will assess the studies for their eligibility, will extract data and will evaluate their risk of bias. Similar outcomes measured in at least two studies will be plotted in the meta-analysis using the Joanna Briggs Institute System for the Unified Management, Assessment and Review of Information. Discussion: This systematic review aims to evaluate if patients with hematologic neoplasm may be at elevated risk of severe COVID-19. This review will differ from the previous ones because we will include controlled studies and groups with only hematologic neoplasm, excluding other cancers. The main hypothesis of our research is that not all hematological cancer patients have high risk of severe COVID-19. Trial registration number: PROSPERO CRD42020199318.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1495-1495
Author(s):  
Gregor Hoermann ◽  
Manja Meggendorfer ◽  
Constance Baer ◽  
Heiko Müller ◽  
Wencke Walter ◽  
...  

Abstract Background: Systemic mastocytosis (SM) is a hematologic neoplasm characterized by the infiltration of clonal mast cells in the bone marrow or other extra-cutaneous organs. The clinical course varies between advanced and non-advanced (indolent and smoldering SM) forms of SM. The vast majority of patients harbor the activating D816V mutation in the KIT tyrosine kinase. Additional somatic mutations in other genes have been recognized as risk factors in SM. Cytogenetic aberrations are rarely found in SM but have been associated with advanced disease. Whole genome sequencing (WGS) and whole transcriptome sequencing (WTS) have been described as an alternative to cytogenetics and targeted molecular genetic analysis in myeloid cancers. Aim: To assess the ability of WGS/WTS to detect cytogenetic aberrations and recurrent somatic mutations in SM. Methods: 120 patients (51 female, 69 male) diagnosed with SM were analyzed with WGS/WTS and results were compared with orthogonal data of KIT D816V PCR, targeted sequencing, and cytogenetics. 47 patients (39%) were diagnosed with advanced SM (1 mast cell leukemia, 3 aggressive SM, 43 SM with associated hematologic neoplasm). For WGS, 2x151bp paired-end reads were generated on NovaSeq 6000 and HiSeqX machines (Illumina, San Diego, CA). BaseSpace's Tumor/Normal app v3 was used to call variants with Strelka Somatic Variant Caller v2.4.7 and structural variants (aberrations with >50bp in size) with Manta (v0.28.0). Genomic DNA from a mixture of multiple anonymous donors (Promega, Fitchburg, WI, USA) was used as normal. For WTS, 2x101 bp paired-end reads were produced with a median of 50 mio. reads per sample, aligned with STAR v2.5.0, and variants were called using Isaac Variant Caller v2.3.13. Results: WGS/WTS detected cytogenetic aberrations in 21% of patients: 2 patients displayed a complex aberrant karyotype, 3 balanced structural aberrations, 16 copy number alterations, and 6 copy number neutral losses of heterozygosity. Aberrations detected by chromosome banding analysis were also found by WGS in all but three patients (small clones with aberrations present in ≤20% of metaphases and <10% of interphase nuclei as determined by FISH). In contrast, WGS/WTS detected additional aberrations in 16 patients. The frequency of chromosomal aberrations detected by WGS/WTS was higher in advanced compared to non-advanced SM (34% vs. 12%, p<0.05). KIT D816V was detected by PCR in 98%, by WGS in 21% and by WTS in 46% of patients. The detection rate by WGS was significantly higher in advanced (36%) compared to non-advanced SM (12%, p<0.05) while no difference was observed for WTS (45% vs. 47%). Somatic mutations outside of KIT were analyzed within a subset of 121 genes recurrently mutated in hematologic neoplasms. 46% of patients showed non-KIT mutations with a median of 2 mutations per patient. Both frequency of non-KIT mutations as well as the median number of mutations per patient was higher in advanced (83%; n=3) compared to non-advanced SM (22%, n=1, p<0.05). Finally, we analyzed the impact of genetic aberrations on survival in our SM cohort. Patients were grouped according to the presence of chromosomal aberrations and gene mutations (non-KIT) as assessed by WGS/WTS. SM patients with both types of aberrations (n=16), one type of aberration (n=47; gene mutations only n=38; chromosomal aberrations only n=8), or no aberration but KIT D816V (n=57) showed significant differences in overall survival (p<0.05, Figure 1). Con clusions: WGS/WTS has limited sensitivity for detection of KIT D816V in SM. This finding can be explained by the low KIT D816V mutation burden typically found in bone marrow aspirates of SM patients. In line, we observed a slightly higher detection rate in advanced SM and in RNA-based WTS analysis. As WGS/WTS will be applied for the diagnostic workup of myeloid malignancies in the future and SM associated with other hematologic neoplasms may be overlooked if not specifically investigated, additional PCR-based techniques are still mandatory to rule out KIT D816V as a diagnostic criterion for SM. In contrast, WGS/WTS detects both chromosomal aberrations and additional gene mutations in patients with SM and can be used as an alternative to cytogenetics and targeted sequencing for risk assessment. In particular, the absence of genetic aberrations in WGS/WTS identifies SM patients with indolent course of the disease and favorable prognosis. Figure 1 Figure 1. Disclosures Hoermann: Novartis: Honoraria. Kern: MLL Munich Leukemia Laboratory: Other: Part ownership. Haferlach: MLL Munich Leukemia Laboratory: Other: Part ownership. Haferlach: MLL Munich Leukemia Laboratory: Other: Part ownership.


2021 ◽  
Vol 11 ◽  
Author(s):  
Philippa Li ◽  
Giulia Biancon ◽  
Timil Patel ◽  
Zenggang Pan ◽  
Shalin Kothari ◽  
...  

Mast cell leukemia with associated hematologic neoplasm (MCL-AHN) is a rare and highly aggressive entity that remains understudied due to the paucity of cases. We present a case of a 45-year-old man who was concurrently diagnosed with mast cell leukemia and acute myeloid leukemia. We identified four additional patients who had MCL-AHN in our institution and performed whole-exome sequencing of all available tumors. Our series revealed a novel and identical NR2F6 variant shared among two of the patients. This case series and sequencing results demonstrate the importance of fully characterizing rare tumors that are resistant to treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dong Wu ◽  
Jiyu Miao ◽  
Jinsong Hu ◽  
Fangmei Li ◽  
Dandan Gao ◽  
...  

Multiple myeloma (MM), the second most commonly diagnosed hematologic neoplasm, is the most significant clinical manifestation in a series of plasma cell (PC) dyscrasia. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM), approximately 1% or 10% of which, respectively, can progress to MM per year, are the premalignant stages of MM. The overall survival (OS) of MM is significantly improved by the introduction of proteasome inhibitors (PIs), but almost all MM patients eventually relapse and resist anti-MM drugs. Therefore, it is crucial to explore the progression of MM and the mechanisms related to MM drug resistance. In this study, we used weighted gene co-expression network analysis (WGCNA) to analyze the gene expression of the dynamic process from normal plasma cells (NPC) to malignant profiling PC, and found that the abnormal gene expression was mainly concentrated in the proteasome. We also found that the expression of one of the proteasomal subunits PSMB7 was capable of distinguishing the different stages of PC dyscrasia and was the highest in ISS III. In the bortezomib (BTZ) treated NDMM patients, higher PSMB7 expression was associated with shorter survival time, and the expression of PSMB7 in the BTZ treatment group was significantly higher than in the thalidomide (Thai) treatment group. In summary, we found that PSMB7 is the key gene associated with MM disease progression and drug resistance.


2021 ◽  
Author(s):  
Nada Assaf ◽  
Raphael Liévin ◽  
Fatiha Merabet ◽  
Victoria Raggueneau ◽  
Jenifer Osman ◽  
...  

Abstract Background: The detection of KMT2A gene rearrangements have an important impact on the prognosis and management of acute leukemias. These alterations most commonly involve reciprocal translocations at specific breakpoint regions within KMT2A. To date, more than 100 translocation partner genes of KMT2A have been identified, with different effects on risk stratification. Methods and Results: We report the case of a mature plasmacytoid dendritic cells proliferation associated with B lymphoblasts harboring a KMT2A-ARHGEF12 fusion. This rare rearrangement, resulting from a cryptic deletion on the long arm of chromosome 11, is located outside the known major and minor breakpoint regions of KMT2A, not reported to date. The review of the few cases of KMT2A-ARHGEF12 reveals the tendency of this deletion to occur in therapy related hematologic neoplasm and confer unfavorable prognosis. Conclusion: This review sheds light into the rare KMT2A-ARHGEF12 fusion in leukemia. Reporting rare chimeras is essential to improve knowledge about the biological mechanism and associated clinical consequences.


2021 ◽  
Vol 22 (6) ◽  
pp. 2964
Author(s):  
Edyta Reszka ◽  
Ewa Jabłońska ◽  
Edyta Wieczorek ◽  
Peter Valent ◽  
Michel Arock ◽  
...  

Systemic mastocytosis (SM) is a hematologic neoplasm with abnormal accumulation of mast cells in various organ systems such as the bone marrow, other visceral organs and skin. So far, only little is known about epigenetic changes contributing to the pathogenesis of SM. In the current article, we provide an overview of epigenetic changes that may occur and be relevant to mastocytosis, including mutations in genes involved in epigenetic processes, such as TET2, DNMT3A and ASXL1, and global and gene-specific methylation patterns in neoplastic cells. Moreover, we discuss methylation-specific pathways and other epigenetic events that may trigger disease progression in mast cell neoplasms. Finally, we discuss epigenetic targets and the effects of epigenetic drugs, such as demethylating agents and BET-targeting drugs, on growth and viability of neoplastic mast cells. The definitive impact of these targets and the efficacy of epigenetic therapies in advanced SM need to be explored in future preclinical studies and clinical trials.


2021 ◽  
Vol 22 (6) ◽  
pp. 2983
Author(s):  
William Shomali ◽  
Jason Gotlib

Systemic mastocytosis (SM) is a rare clonal hematologic neoplasm, driven, in almost all cases, by the activating KIT D816V mutation that leads to the growth and accumulation of neoplastic mast cells. While patients with advanced forms of SM have a poor prognosis, the introduction of KIT inhibitors (e.g., midostaurin, and avapritinib) has changed their outlook. Because of the heterogenous nature of advanced SM (advSM), successive iterations of response criteria have tried to capture different dimensions of the disease, including measures of mast cell burden (percentage of bone marrow mast cells and serum tryptase level), and mast cell-related organ damage (referred to as C findings). Historically, response criteria have been anchored to reversion of one or more organ damage finding(s) as a minimal criterion for response. This is a central principle of the Valent criteria, Mayo criteria, and International Working Group-Myeloproliferative Neoplasms Research and Treatment and European Competence Network on Mastocytosis (IWG-MRT-ECNM) consensus criteria. Irrespective of the response criteria, an ever-present challenge is how to apply response criteria in patients with SM and an associated hematologic neoplasm, where the presence of both diseases complicates assignment of organ damage and adjudication of response. In the context of trials with the selective KIT D816V inhibitor avapritinib, pure pathologic response (PPR) criteria, which rely solely on measures of mast cell burden and exclude consideration of organ damage findings, are being explored as more robust surrogate of overall survival. In addition, the finding that avapritinib can elicit complete molecular responses of KIT D816V allele burden, establishes a new benchmark for advSM and motivates the inclusion of definitions for molecular response in future criteria. Herein, we also outline how the concept of PPR can inform a proposal for new response criteria which use a tiered evaluation of pathologic, molecular, and clinical responses.


2021 ◽  
Vol 12 ◽  
pp. 204062232199725
Author(s):  
Lu Xue ◽  
Chunhuai Li ◽  
Jin Ren ◽  
Yue Wang

Aims: Acute myeloid leukemia (AML) is an aggressive hematologic neoplasm, in which relapse due to drug resistance is the main cause for treatment failure and the disease progression. In this study, we aimed to investigate the molecular mechanism of KDM4C-dependent MALAT1/miR-328-3p/CCND2 axis in cytarabine (Ara-C) resistance in the context of AML. Methods: Bioinformatics analysis was performed to predict the targeting relationships among KDM4C, MALAT1, miR-328-3p, and CCND2 in AML, which were validated with chromatin immunoprecipitation and dual-luciferase reporter assay. Methylation-specific polymerase chain reaction was conducted to detect the methylation of MALAT1 promoter. After conducting gain- and loss-of-function assays, we investigated the effect of KDM4C on cell Ara-C resistance. A NOD/SCID mouse model was established to further investigate the roles of KDM4C/MALAT1/miR-328-3p/CCND2 in Ara-C resistant AML cells. Results: KDM4C expression was upregulated in AML. KDM4C upregulation promoted the demethylation in the promoter region of MALAT1 to increase its expression, MALAT1 targeted and inhibited miR-328-3p expression, enhancing the Ara-C resistance of HL-60/A. miR-328-3p targeted and suppressed the expression of CCND2 in HL-60/A to inhibit the Ara-C resistance. Mechanistically, KDM4C regulated miR-328-3p/CCND2 through MALAT1, resulting in Ara-C resistance in AML. Findings in an in vivo xenograft NOD/SCID mouse model further confirmed the contribution of KDM4C/MALAT1/miR-328-3p/CCND2 in the Ara-C resistant AML. Conclusion: Our study demonstrated that KDM4C may up-regulate MALAT1 expression, which decreases the expression of miR-328-3p. The downregulation of miR-328-3p increased the level of CCND2, which induced the Ara-C resistance in AML.


Sign in / Sign up

Export Citation Format

Share Document