active core
Recently Published Documents


TOTAL DOCUMENTS

192
(FIVE YEARS 43)

H-INDEX

32
(FIVE YEARS 4)

Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 121
Author(s):  
Veeresh Singh ◽  
Sushant Dutta ◽  
Yogesh Wadadekar ◽  
C. H. Ishwara-Chandra

Remnant radio galaxies (RRGs), characterized by the cessation of AGN activity, represent a short-lived last phase of radio galaxy’s life-cycle. Hitherto, searches for RRGs, mainly based on the morphological criteria, have identified large angular size sources resulting into a bias towards the remnants of powerful FR-II radio galaxies. In this study we make the first attempt to perform a systematic search for RRGs of small angular sizes (<30′′) in the XMM−LSS field. By using spectral curvature criterion we discover 48 remnant candidates exhibiting strong spectral curvature i.e.,   α150MHz325MHz−α325MHz1.4GHz≥ 0.5. Spectral characteristics at higher frequency regime (>1.4 GHz) indicate that some of our remnant candidates can depict recurrent AGN activity with an active core. We place an upper limit on the remnant fraction (frem) to be 3.9%, which increases to 5.4% if flux cutoff limit of S150MHz≥ 10 mJy is considered. Our study unveils, hitherto unexplored, a new population of small-size (<200 kpc) remnant candidates that are often found to reside in less dense environments and at higher redshifts (z) > 1.0. We speculate that a relatively shorter active phase and/or low jet power can be plausible reasons for the small size of remnant candidates.


2021 ◽  
Vol 04 ◽  
Author(s):  
Ipsita Chinya ◽  
Ranjan Sen ◽  
Anirban Dhar

Background: A polymer as a host in the optical waveguide has many advantages and, when doped with rare-earth (RE) elements, offers an efficient connection, compared to its glass-based counterparts as an amplifier. However, a polymer matrix causes the concentration quenching effect of REs in the polymer matrix, making the fabrication of RE-doped polymer waveguides more complicated as compared to the fabrication of glass-based complements. Moreover, controlling scattering loss at the particle-polymer interface for maintaining the optical clarity of the composite is also a great challenge. Objective: The main aim of the present study was to optimize the synthesis of Er2O3grafted Polymethylmethacrylate (PMMA)-Polystyrene (PS) composite based transparent ternary nanocomposite and its characterization to implement them as a potential material for active core in Polymer Optical Preform (POP). Methods: Nano Erbium Oxide (Er2O3) was successfully synthesized by the wet-chemical method and encapsulated by a polymerizable surfactant, i.e., 3-Methacyloxypropyltrimethoxy silane (MPS). The encapsulated nanoparticles were further subjected to grafting with PMMA using in-situ polymerization of methyl methacrylate (MMA) followed by blending with PS via solvent mixing technique. Results: The optical transparency of the ternary composite was achieved by fine-tuning the diameter (15-20 nm) of the PMMA coated Er2O3. The crystallinity present in Er2O3 was significantly reduced after PMMA coating. The comparatively higher refractive index obtained at 589 nm wavelength for the synthesized material indicated its usability as active core material in the presence of a commercial acrylate cladding tube. A photoluminescence (Pl) study indicated that the technique might be used for a higher level of Er3+doping in polymer matrix without sacrificing its transparency. Conclusion: The obtained results indicated that the sample synthesized with the adopted technique gives better Pl intensity compared to the other methods of Er3+ incorporation in polymer optical preform (POP).


2021 ◽  
Vol 11 ◽  
Author(s):  
Ling Wei ◽  
Jiaxin Chen ◽  
Chao Song ◽  
Yuexin Zhang ◽  
Yimeng Zhang ◽  
...  

A core transcriptional regulatory circuit (CRC) is a group of interconnected auto-regulating transcription factors (TFs) that form loops and can be identified by super-enhancers (SEs). Studies have indicated that CRCs play an important role in defining cellular identity and determining cellular fate. Additionally, core TFs in CRCs are regulators of cell-type-specific transcriptional regulation. However, a global view of CRC properties across various cancer types has not been generated. Thus, we integrated paired cancer ATAC-seq and H3K27ac ChIP-seq data for specific cell lines to develop the Cancer CRC (http://bio.liclab.net/Cancer_crc/index.html). This platform documented 94,108 cancer CRCs, including 325 core TFs. The cancer CRC also provided the “SE active core TFs analysis” and “TF enrichment analysis” tools to identify potentially key TFs in cancer. In addition, we performed a comprehensive analysis of core TFs in various cancer types to reveal conserved and cancer-specific TFs.


Author(s):  
Dmitry V. Kudashkin ◽  
Dmitry Krisanov ◽  
Ilya D. Vatnik ◽  
Sergey V. Khorev ◽  
Dmitry V. Churkin
Keyword(s):  

Author(s):  
D. Kudashkin ◽  
D. Krisanov ◽  
S. Khorev ◽  
D. Churkin ◽  
I. Vatnik
Keyword(s):  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Samik Gupta

Abstract Pyridoxal and Pyridoxal 5-phosphate are two among the six aqua soluble vitamers of vitamin B6. They can form Schiff bases readily due to the presence of aldehyde group. Schiff bases can offer diverse coordination possibilities for many transition metals as has been found in a large volume of research till now. The coordination complexes thus formed gives insight into the active core structure and enzymatic activities of vit B6 containing enzymes. Apart from that, these complexes have been found useful as catalysts for synthesis of fine chemicals, as sensors and for their diverse biological activities.


Sign in / Sign up

Export Citation Format

Share Document