neuronal soma
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 22)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Author(s):  
wenzhong liu ◽  
hualan li

Infection with the Zika virus results in severe neurological disease in adults or congenital Zika syndrome in newborns. We employed the domain search strategy to study the Zika virus glycoprotein E in this work. The results revealed that immature E contains a NGF domain (“MNKCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHH”) and is capable of interacting with TrkA. The E/TrkA complex increased E's interaction with receptors such as Axl and facilitated Zika virus endocytosis via clathrin. Rab5 retrograded transmission of Zika virus-containing E/TrkA endosomal signals to neuronal soma. Rab7 helped dissociation of E/TrkA in late acidic endosomes, and then E became mature after the NGF domain was cut. After membrane fusion with the endosome, the Zika virus was released into the neuron cell body. It showed only the immature E protein of Zika had NGF activity. The retrograde trafficking of endosomal signals (E/TrkA) similar to NGF/TrkA enabled Zika virus to infect neuronal cells. E's interference with the TrkA signal impaired neuronal cell growth and results in neuronal cell apoptosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yanyan Fu ◽  
Tu Hu ◽  
Qianyue Zhang ◽  
Shuhan Meng ◽  
Ying Lu ◽  
...  

The maintenance of visual function not only requires the normal structure and function of neurons but also depends on the effective signal propagation of synapses in visual pathways. Synapses emerge alterations of plasticity in the early stages of neuronal damage and affect signal transmission, which leads to transneuronal degeneration. In the present study, rat model of acute retinal ischemia/reperfusion (RI/R) was established to observe the morphological changes of neuronal soma and synapses in the inner plexiform layer (IPL), outer plexiform layer (OPL), and dorsal lateral geniculate nucleus (dLGN) after retinal injury. We found transneuronal degeneration in the visual pathways following RI/R concretely presented as edema and mitochondrial hyperplasia of neuronal soma in retina, demyelination, and heterotypic protein clusters of axons in LGN. Meanwhile, small immature synapses formed, and there are asynchronous changes between pre- and postsynaptic components in synapses. This evidence demonstrated that transneuronal degeneration exists in RI/R injury, which may be one of the key reasons for the progressive deterioration of visual function after the injury is removed.


2021 ◽  
Vol 14 ◽  
Author(s):  
Anne-Kathrin Lutz ◽  
Andrea Pérez Arévalo ◽  
Valentin Ioannidis ◽  
Nadine Stirmlinger ◽  
Maria Demestre ◽  
...  

SHANK2 (ProSAP1) is a postsynaptic scaffolding protein of excitatory synapses in the central nervous system and implicated in the development of autism spectrum disorders (ASD). Patients with mutations in SHANK2 show autism-like behaviors, developmental delay, and intellectual disability. We generated human induced pluripotent stem cells (hiPSC) from a patient carrying a heterozygous deletion of SHANK2 and from the unaffected parents. In patient hiPSCs and derived neurons SHANK2 mRNA and protein expression was reduced. During neuronal maturation, a reduction in growth cone size and a transient increase in neuronal soma size were observed. Neuronal proliferation was increased, and apoptosis was decreased in young and mature neurons. Additionally, mature patient hiPSC-derived neurons showed dysregulated excitatory signaling and a decrease of a broad range of signaling molecules of the ERK-MAP kinase pathway. These findings could be confirmed in brain samples from Shank2(−/−) mice, which also showed decreased mGluR5 and phospho-ERK1/2 expression. Our study broadens the current knowledge of SHANK2-related ASD. We highlight the importance of excitatory-inhibitory balance and mGluR5 dysregulation with disturbed downstream ERK1/2 signaling in ASD, which provides possible future therapeutic strategies for SHANK2-related ASD.


2021 ◽  
Author(s):  
Paul Thomas Conduit ◽  
Amrita Mukherjee

Microtubules are polarised polymers nucleated by multi-protein γ-tubulin ring complexes (γ-TuRCs). Within neurons, microtubule polarity is plus-end-out in axons and mixed or minus-end-out in dendrites. Previously we showed that within the soma of Drosophila sensory neurons γ-tubulin localises asymmetrically to Golgi stacks, Golgi-derived microtubules grow asymmetrically towards the axon, and growing microtubule plus-ends are guided towards the axon and restricted from entering dendrite in a Kinesin-2-dependent manner (Mukerjee et al., 2020). Here we show that depleting γ-TuRCs perturbs the direction of microtubule growth from the Golgi stacks, consistent with a model for asymmetric microtubule nucleation involving γ-TuRCs and other nucleation-promoting factors. We also directly observe microtubule turning along microtubule bundles and show that depleting APC, proposed to link Kinesin-2 to plus ends, reduces microtubule turning and increases plus end growth into dendrites. These results support a model of asymmetric nucleation and guidance within the neuronal soma that helps establish and maintain overall microtubule polarity.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1742
Author(s):  
Mary K. Swinton ◽  
Erin E. Sundermann ◽  
Lauren Pedersen ◽  
Jacques D. Nguyen ◽  
David J. Grelotti ◽  
...  

HIV-associated neurocognitive disorders (HAND) persist despite the advent of antiretroviral therapy (ART), suggesting underlying systemic and central nervous system (CNS) inflammatory mechanisms. The endogenous cannabinoid receptors 1 and 2 (CB1 and CB2) modulate inflammatory gene expression and play an important role in maintaining neuronal homeostasis. Cannabis use is disproportionately high among people with HIV (PWH) and may provide a neuroprotective effect for those on ART due to its anti-inflammatory properties. However, expression profiles of CB1 and CB2 in the brains of PWH on ART with HAND have not been reported. In this study, biochemical and immunohistochemical analyses were performed to determine CB1 and CB2 expression in the brain specimens of HAND donors. Immunoblot revealed that CB1 and CB2 were differentially expressed in the frontal cortices of HAND brains compared to neurocognitively unimpaired (NUI) brains of PWH. CB1 expression levels negatively correlated with memory and information processing speed. CB1 was primarily localized to neuronal soma in HAND brains versus a more punctate distribution of neuronal processes in NUI brains. CB1 expression was increased in cells with glial morphology and showed increased colocalization with an astroglial marker. These results suggest that targeting the endocannabinoid system may be a potential therapeutic strategy for HAND.


Author(s):  
Mary K Swinton ◽  
Erin E Sundermann ◽  
Lauren Pedersen ◽  
Jacques Nguyen ◽  
David Grelotti ◽  
...  

HIV-associated neurocognitive disorders (HAND) persist despite the advent of antiretroviral therapy (ART), suggesting underlying systemic and central nervous system (CNS) inflammatory mechanisms. The endogenous cannabinoid receptors 1 and 2 (CB1 and CB2) modulate inflammatory gene expression and play an important role in maintaining neuronal homeostasis. Cannabis use is disproportionately high among people with HIV (PWH) and may provide a neuroprotective effect for those on ART due to its anti-inflammatory properties. However, expression profiles of CB1 and CB2 in the brains of PWH on ART with HAND have not been reported. In this study, biochemical and immunohistochemical analyses were performed to determine CB1 and CB2 expression in brain specimens of HAND donors. Immunoblot revealed CB1 and CB2 were differentially expressed in frontal cortices from HAND brains compared to neurocognitively unimpaired (NUI) brains from PWH. CB1 expression levels negatively correlated with memory and information processing speed. CB1 was primarily localized to neuronal soma in HAND brains versus a more punctate distribution on neuronal processes of NUI brains. CB1 expression was increased in cells with glial morphology and showed increased colocalization with an astroglial marker. These results suggest that targeting the endocannabinoid system may be a potential therapeutic strategy for HAND.


2021 ◽  
Vol 8 ◽  
Author(s):  
Eleanor L. Hopkins ◽  
Weixi Gu ◽  
Bostjan Kobe ◽  
Michael P. Coleman

Axon degeneration represents a pathological feature of many neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease where axons die before the neuronal soma, and axonopathies, such as Charcot-Marie-Tooth disease and hereditary spastic paraplegia. Over the last two decades, it has slowly emerged that a central signaling pathway forms the basis of this process in many circumstances. This is an axonal NAD-related signaling mechanism mainly regulated by the two key proteins with opposing roles: the NAD-synthesizing enzyme NMNAT2, and SARM1, a protein with NADase and related activities. The crosstalk between the axon survival factor NMNAT2 and pro-degenerative factor SARM1 has been extensively characterized and plays an essential role in maintaining the axon integrity. This pathway can be activated in necroptosis and in genetic, toxic or metabolic disorders, physical injury and neuroinflammation, all leading to axon pathology. SARM1 is also known to be involved in regulating innate immunity, potentially linking axon degeneration to the response to pathogens and intercellular signaling. Understanding this NAD-related signaling mechanism enhances our understanding of the process of axon degeneration and enables a path to the development of drugs for a wide range of neurodegenerative diseases.


2021 ◽  
Vol 203 ◽  
pp. 106023
Author(s):  
Qiufu Li ◽  
Yu Zhang ◽  
Hanbang Liang ◽  
Hui Gong ◽  
Liang Jiang ◽  
...  

Author(s):  
Lynn van Olst ◽  
Carla Rodriguez-Mogeda ◽  
Carmen Picon ◽  
Svenja Kiljan ◽  
Rachel E. James ◽  
...  

AbstractMeningeal inflammation strongly associates with demyelination and neuronal loss in the underlying cortex of progressive MS patients, thereby contributing significantly to clinical disability. However, the pathological mechanisms of meningeal inflammation-induced cortical pathology are still largely elusive. By extensive analysis of cortical microglia in post-mortem progressive MS tissue, we identified cortical areas with two MS-specific microglial populations, termed MS1 and MS2 cortex. The microglial population in MS1 cortex was characterized by a higher density and increased expression of the activation markers HLA class II and CD68, whereas microglia in MS2 cortex showed increased morphological complexity and loss of P2Y12 and TMEM119 expression. Interestingly, both populations associated with inflammation of the overlying meninges and were time-dependently replicated in an in vivo rat model for progressive MS-like chronic meningeal inflammation. In this recently developed animal model, cortical microglia at 1-month post-induction of experimental meningeal inflammation resembled microglia in MS1 cortex, and microglia at 2 months post-induction acquired a MS2-like phenotype. Furthermore, we observed that MS1 microglia in both MS cortex and the animal model were found closely apposing neuronal cell bodies and to mediate pre-synaptic displacement and phagocytosis, which coincided with a relative sparing of neurons. In contrast, microglia in MS2 cortex were not involved in these synaptic alterations, but instead associated with substantial neuronal loss. Taken together, our results show that in response to meningeal inflammation, microglia acquire two distinct phenotypes that differentially associate with neurodegeneration in the progressive MS cortex. Furthermore, our in vivo data suggests that microglia initially protect neurons from meningeal inflammation-induced cell death by removing pre-synapses from the neuronal soma, but eventually lose these protective properties contributing to neuronal loss.


2021 ◽  
Vol 14 ◽  
Author(s):  
Tianyu Hu ◽  
Xiaofeng Xu ◽  
Shangbin Chen ◽  
Qian Liu

Neuronal soma segmentation is a crucial step for the quantitative analysis of neuronal morphology. Automated neuronal soma segmentation methods have opened up the opportunity to improve the time-consuming manual labeling required during the neuronal soma morphology reconstruction for large-scale images. However, the presence of touching neuronal somata and variable soma shapes in images brings challenges for automated algorithms. This study proposes a neuronal soma segmentation method combining 3D U-shaped fully convolutional neural networks with multi-task learning. Compared to existing methods, this technique applies multi-task learning to predict the soma boundary to split touching somata, and adopts U-shaped architecture convolutional neural network which is effective for a limited dataset. The contour-aware multi-task learning framework is applied to the proposed method to predict the masks of neuronal somata and boundaries simultaneously. In addition, a spatial attention module is embedded into the multi-task model to improve neuronal soma segmentation results. The Nissl-stained dataset captured by the micro-optical sectioning tomography system is used to validate the proposed method. Following comparison to four existing segmentation models, the proposed method outperforms the others notably in both localization and segmentation. The novel method has potential for high-throughput neuronal soma segmentation in large-scale optical imaging data for neuron morphology quantitative analysis.


Sign in / Sign up

Export Citation Format

Share Document