assembly line balancing
Recently Published Documents


TOTAL DOCUMENTS

984
(FIVE YEARS 251)

H-INDEX

62
(FIVE YEARS 7)

Author(s):  
Mohammed-Amine Abdous ◽  
Xavier Delorme ◽  
Daria Battini ◽  
Fabio Sgarbossa ◽  
Sandrine Berger-Douce

2021 ◽  
pp. 1063293X2110655
Author(s):  
Yuling Jiao ◽  
Xue Deng ◽  
Mingjuan Li ◽  
Xiaocui Xing ◽  
Binjie Xu

Aiming at improving assembly line efficiency and flexibility, a balancing method of parallel U-shaped assembly line system is proposed. Based on the improved product priority diagram, the bidirectional priority value formula is obtained. Then, assembly lines are partitioned into z-q partitions and workstations are defined. After that, the mathematical model of the parallel U-shaped assembly line balancing problem is established. A heuristic algorithm based on bidirectional priority values is used to solve explanatory examples and test examples. It can be seen from the results and the effect indicators of the assembly line balancing problem that the heuristic algorithm is suitable for large balancing problems. The proposed method has higher calculation accuracy and shorter calculation time. The balancing effect of the parallel U-shaped assembly line is better than that of single U-shaped assembly line, which verifies the superiority of the parallel U-type assembly line and effectiveness of the proposed method. It provides a theoretical and practical reference for parallel U-type assembly line balancing problem.


Author(s):  
Yohannes Admassu Gelaw

This study is designed to assess and improve apparel sewing section efficiency and productivity throughout line balancing. Apparel industry is one of the oldest and among the most global industry, being primarily concerned with the design and production of cloth and their supply. The central process in apparel manufacturing is the joining together of components which is known as the sewing process , which is the most labour intensive type of manufacturing process .Proper utilization of resources in garment sewing section is more critical to enhance the performance of the apparel industry by reducing production cost and minimizing wastage. For effective utilization of resources in the sewing section, good line balancing is important to increase productivity and production efficiency. This research was a design to analyse and improve the assembling line in the case of Telaje garment manufacturing and sales plc. The study was first conduct observations in the production floor and start work with the selection of sewing line in the garment production process. Among the nine lines of the factory select one on the production floor and one garment ordered product known as five pocket men’s jeans trousers are selected. For this study, both qualitative and quantitative research approaches were employed. Both primary and secondary data sources are used to detail the collected relevant data to understand the current efficiency scenario of the factory. The main challenges to minimizing line efficiency and productivity with the expected performance measurement are improper utilization of resources and improper implementation of line balancing in sewing section, therefore this thesis work shows that the bottleneck process and consequence solution will be searched, and finally significantly improving the productivity by 418 unit products/ day and, hence the efficiency will increase from 28.83% to 50.04% of the line


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Qidong Yin ◽  
Xiaochuan Luo ◽  
Julien Hohenstein

Two-sided assembly lines are widely used in the large-size product manufacturing industry, especially for automotive assembly production. Balancing the assembly line is significant for assembly process planning and assembly production. In this study, we develop a novel and exact method to optimize the two-sided assembly line balancing problem with zoning constraints (TALBz), in which the aim is to minimize the number of mated-stations considering the task restrictions. A mixed-integer programming model is employed to exactly describe the TALBz problem. To strengthen the computational efficiency, we apply Dantzig–Wolfe decomposition to reformulate the TALBz problem. We further propose a branch-and-price (B&P) algorithm that integrates the column generation approach into a branch-and-bound frame. Both the benchmark datasets with zoning constraints and without zoning constraints are tested to evaluate the performance of the B&P algorithm. The numerical results show that our proposed approach can obtain optimal solutions efficiently on most cases. In addition, experiments on the real-world datasets originating from passenger vehicle assembly lines are conducted. The proposed B&P algorithm shows its advantage in tackling practical problems with the task restrictions. This developed methodology therefore provides insight for solving large-scale TALBz problems in practice.


Sign in / Sign up

Export Citation Format

Share Document