heat deposition
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 15)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 11 (20) ◽  
pp. 9753
Author(s):  
Hovan Lee ◽  
Cedric Weber ◽  
Manfred Fähnle ◽  
Mostafa Shalaby

In past decades, ultrafast spin dynamics in magnetic systems have been associated with heat deposition from high energy laser pulses, limiting the selective access to spin order. Here, we use a long wavelength terahertz (THz) pump–optical probe setup to measure structural features in the ultrafast time scale. We find that complete demagnetization is possible with <6 THz pulses. This occurs concurrently with longitudinal acoustic phonons and an electronic response.


2021 ◽  
Vol 7 (2) ◽  
pp. 554-557
Author(s):  
Rosa Daschner ◽  
Holger Hewener ◽  
Wolfgang Bost ◽  
Steffen Weber ◽  
Steffen Tretbar ◽  
...  

Abstract High-Intensity Focused Ultrasound (HIFU) is an alternative tumour therapy with the ability for non-invasive thermal ablation of tissue. For a safe application, the heat deposition needs to be monitored over time, which is currently done with Magnetic Resonance Imaging. Ultrasound (US) based monitoring is a promising alternative, as it is less expensive and allows the use of a single device for both therapy and monitoring. In this work, a method for spatial and temporal US thermometry has been investigated based on simulation studies and in-vitro measurements. The chosen approach is based on the approximately linear dependence between temperature and speed of sound (SoS) in tissue for a given temperature range. By tracking the speckles of successive B-images, the possibility of detecting local changes in SoS and therefore in temperature is given. A speckle tracking algorithm was implemented for 2D and 3D US thermometry using a spatial compounding method to reduce artifacts. The algorithm was experimentally validated in an agar-based phantom and in porcine tissue for temperature rises up to △ 8°C. We used a focusing single element US transducer as therapeutic probe, a linear (/matrix array) transducer with 128 (/32∙32) elements for imaging and thermocouples for validation and calibration. In all experiments, both computational and in-vitro, we succeeded in monitoring the thermal induced SoS changes over time. The in-vitro measurements were in good agreement with the simulation results and the thermocouple measurements (rms temperature difference = 0.53 °C, rms correlation coefficient = 0. 96).


2021 ◽  
pp. 113-131
Author(s):  
Wei Shen ◽  
Benjamin Rouben

Reactor physics aims to understand accurately the reactivity and the distribution of all the reaction rates (most importantly of the power), and their rate of change in time, for any reactor configuration. To do this, the multiplication factor (or, equivalently, reactivity) and the neutron-flux distribution under various operating conditions and at different times need to be calculated repeatedly. Most of the other parameters of interest (such as neutron reaction rates, power, heat deposition, etc.) are derived from them. They are governed by the geometry, the material composition and the nuclear data (i.e., the neutron cross sections, their energy dependence, the energy spectra and the angular distributions of secondary particles, etc.). For radiation-shielding calculations, additional photon interactions and coupled neutron-photon interaction data are required.


Solar Physics ◽  
2021 ◽  
Vol 296 (6) ◽  
Author(s):  
Thomas Williams ◽  
Robert W. Walsh ◽  
Stephane Regnier ◽  
Craig D. Johnston

AbstractCoronal loops form the basic building blocks of the magnetically closed solar corona yet much is still to be determined concerning their possible fine-scale structuring and the rate of heat deposition within them. Using an improved multi-stranded loop model to better approximate the numerically challenging transition region, this article examines synthetic NASA Solar Dynamics Observatory’s (SDO) Atmospheric Imaging Assembly (AIA) emission simulated in response to a series of prescribed spatially and temporally random, impulsive and localised heating events across numerous sub-loop elements with a strong weighting towards the base of the structure: the nanoflare heating scenario. The total number of strands and nanoflare repetition times is varied systematically in such a way that the total energy content remains approximately constant across all the cases analysed. Repeated time-lag detection during an emission time series provides a good approximation for the nanoflare repetition time for low-frequency heating. Furthermore, using a combination of AIA 171/193 and 193/211 channel ratios in combination with spectroscopic determination of the standard deviation of the loop-apex temperature over several hours alongside simulations from the outlined multi-stranded loop model, it is demonstrated that both the imposed heating rate and number of strands can be realised.


2021 ◽  
Vol 247 ◽  
pp. 07014
Author(s):  
Domenico Valerio ◽  
Nicolò Abrate ◽  
Sandra Dulla ◽  
Giuseppe Francesco Nallo ◽  
Ravetto Piero

The Fast REactor NEutronics/Thermal-hydraulICs (FRENETIC) code has been developed during the last years at Politecnico di Torino, implementing a full-core coupled neutronic/thermal-hydraulics model for steady-state and transient analysis of liquid-metal cooled fast breeder reactor (LMFBR). In the framework of the validation activities for the code, an analysis of the sodium-cooled reactor EBR-II, previously carried out in the frame of a IAEA Coordinated Research Project, is performed with FRENETIC including the most recent physics models. In particular, photon transport and heat deposition are taken into account, a feature which has been proved in previous studies to be relevant to the correct study of the EBR-II core. To this purpose, a set of nuclear data for photons has been generated by means of the Monte Carlo code Serpent-2, and it is demonstrated that the code is able to take into account the photon heat deposition in the EBR-II.


2020 ◽  
Vol 95 (8) ◽  
pp. 085605
Author(s):  
Qingwei Zeng ◽  
Lei Liu ◽  
Jingjing Ju ◽  
Shuai Hu ◽  
Kejin Zhang

Sign in / Sign up

Export Citation Format

Share Document