ring rotation
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 15)

H-INDEX

24
(FIVE YEARS 2)

Author(s):  
Ching-Liang Su

In this study, “ring rotation invariant transform” techniques are used to add more salient feature to the original images. The “ring rotation invariant transform” can solve image rotation problem, which transfers a ring signal to several signal vectors in the complex domain, whereby to generate invariant magnitude. Matrix correlation is employed to combine these magnitudes to generate the various discriminators, by which to identify objects. For managing image-shifting problem, one pixel in sample image is compared with surrounding pixels of unknown image. The comparison approaching in this study is by the basis of pixel-to-pixel-comparisons.


2021 ◽  
Vol 8 ◽  
Author(s):  
Krzysztof Makuch ◽  
Jakub Hryc ◽  
Michal Markiewicz ◽  
Marta Pasenkiewicz-Gierula

Lutein and zeaxanthin are two similar carotenoids of the xanthophyll subgroup. Carotenoids are synthesized almost entirely by plants but are also present in significant amounts in animals. They are essential components of the lipid matrix of biomembranes, and one of their functions is to protect cells from light radiation, free radicals and oxidative stress. Carotenoids, depending on their chemical structure, can locate at various positions and in different orientations in the bilayer. Xanthophylls (XAN) are polar and in the bilayer are positionally restricted. In the case of lutein and zeaxanthin, whose both ionone rings are hydroxy-substituted and as such are anchored in the lipid bilayer interfaces, the position is generally transmembrane. However, both experimental and computer modelling studies indicate that lutein can also locate horizontally below the bilayer interface. This location has never been observed for zeaxanthin. To find a molecular-level explanation for the difference in the orientations of the XAN molecules in the bilayer, a number of phosphatidylcholine-XAN bilayers were constructed and molecular dynamics (MD) simulated for 1.1 µs each. The all-trans XAN molecules were initially placed either parallel or perpendicular to the bilayer surface. With the exception of one lutein, the horizontally placed molecules adopted the transmembrane orientation within 100–600 ns. On the basis of detailed analyses of the XAN orientations and the numbers and lifetimes of their interactions in the bilayer, a plausible explanation is offered as to why a lutein molecule may remain in the horizontal orientation while zeaxanthin does not. Contrary to common believe, lutein horizontal orientation is not related to the ε-ring rotation around the C6′-C7′ bond.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fei Chen ◽  
Chao Wang ◽  
Ke Yan ◽  
Muhammad Azeem Ghouri ◽  
Yongsheng Zhu  ◽  
...  

Purpose This paper aims to analyze the temperature field and the heat transfer performance of the counter rotating dual rotor bearings (CRDRB) based on the air phase flow field at different speeds to provide effective support for the lubrication and the thermal design of CRDRB. Design/methodology/approach In this study, taking H7006C angular contact ball bearing as an example, based on the flow visualization technique and the thermal analysis methods, the effects of outer ring speed on the air phase flow field, the temperature field and the heat transfer in bearing cavity were investigated. Findings Results indicated that there were more complex turbulent air vortices in CRDRB cavity. Turbulent cyclones in critical contact zone reduced the heat dissipation capacity of air. Compared with single rotor bearing with a static outer ring, the average heat transfer coefficient reduced by 11.78% and the average temperature raised by 3.06 K inside CRDRB cavity. Under the influence of outer ring rotation, the high temperature area in ball-inner raceway contact zone and pocket raised and reduced by 160.13% and 30.48%, respectively. The outer ring rotation had opposite effect on the heat dissipation of raceway contact zone and pocket. Originality/value The air phase flow field characteristics and the heat transfer performance of CRDRB were revealed and analyzed from the mechanism. An area quantification method was presented as an auxiliary mean of the thermal analysis to evaluate the heat transfer performance of bearing.


i-Perception ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 204166952110200
Author(s):  
Uwe Mattler ◽  
Maximilian Stein ◽  
Robert Fendrich

We report a novel visual illusion we call the Ring Rotation Illusion (RRI). When a ring of stationary points replaces a circular outline, the ring of points appears to rotate to a halt, although no actual motion has been displayed. Three experiments evaluate the clarity of the illusory rotation. Clarity decreased as the diameter of the circle and ring increased and increased as the number of points forming the ring increased. The optimal interstimulus interval (ISI) between the circle and ring was 90 ms when stimulus presentations lasted 100 ms but 0 ms with 500 ms presentations. We compare the RRI to the Motion Bridging Effect (MBE), a similar illusion in which a stationary ring of points replaces an initial ring of points that spins so rapidly it looks like a stationary outline. A rotation of the stationary ring is seen that usually matches the direction of the initial ring’s invisible spin. Participants reported a slightly more frequent and clearer motion percept with the MBE than RRI. ISI manipulations had similar effects on the two illusions, but the effects of number of points and ring diameter were largely restricted to the RRI. We suggest that both the RRI and MBE motion percepts are produced by a visual heuristic that holds that the transition from an outline circle to a ring of points is plausibly explained by a rapid spin decelerating to a halt, but in the case of the MBE, an additional direction-sensitive mechanism contributes to this percept.


2021 ◽  
Author(s):  
Chi-Hsien Wang ◽  
Kai-Jen Chen ◽  
Tsung-Huan Wu ◽  
Hung-Kai Chang ◽  
Yoshitaka Tsuchido ◽  
...  

Unique molecular motions, reversible internal rotation of ferrocene and flipping of crown ether are observed in DB30C10 and DB18C6-containing interlocked molecules, respectively.


RSC Advances ◽  
2021 ◽  
Vol 11 (40) ◽  
pp. 24575-24579
Author(s):  
Osamu Iwanaga ◽  
Kazuki Fukuyama ◽  
Shigeki Mori ◽  
Jun Tae Song ◽  
Tatsumi Ishihara ◽  
...  

Ring rotation of ruthenium(iv) N-confused porphyrin μ-oxo-dimer was controlled by protonation at the peripheral nitrogen moieties.


2020 ◽  
Vol 6 (41) ◽  
pp. eabb9605 ◽  
Author(s):  
Soung-Hun Roh ◽  
Mrinal Shekhar ◽  
Grigore Pintilie ◽  
Christophe Chipot ◽  
Stephan Wilkens ◽  
...  

Rotary vacuolar adenosine triphosphatases (V-ATPases) drive transmembrane proton transport through a Vo proton channel subcomplex. Despite recent high-resolution structures of several rotary ATPases, the dynamic mechanism of proton pumping remains elusive. Here, we determined a 2.7-Å cryo–electron microscopy (cryo-EM) structure of yeast Vo proton channel in nanodisc that reveals the location of ordered water molecules along the proton path, details of specific protein-lipid interactions, and the architecture of the membrane scaffold protein. Moreover, we uncover a state of Vo that shows the c-ring rotated by ~14°. Molecular dynamics simulations demonstrate that the two rotary states are in thermal equilibrium and depict how the protonation state of essential glutamic acid residues couples water-mediated proton transfer with c-ring rotation. Our cryo-EM models and simulations also rationalize a mechanism for inhibition of passive proton transport as observed for free Vo that is generated as a result of V-ATPase regulation by reversible disassembly in vivo.


2020 ◽  
Vol 24 (01n03) ◽  
pp. 153-160
Author(s):  
Martina Bischetti ◽  
Giuseppe Pomarico ◽  
Sara Nardis ◽  
Federica Mandoj ◽  
Daniel O. Cicero ◽  
...  

A series of 5,10,15-triarylcorroles has been prepared, with the meso-aryl rings functionalized with different substituents to investigate their influence on the aryl ring rotation with respect to the corrole plane. The study has been carried out by different NMR techniques, allowing the complete assignment of the 1H NMR spectra and giving insights on the kinetic and thermodynamic factors driving the atropisomerism in triarylcorrole derivatives.


This research article analyzes the entrance effects in concentric rings with rotation of inner ring for the blood model Casson non-Newtonian fluid. The investigation is done with the assumption that, the inner ring rotates with a constant velocity along angular direction also the outer ring is at rest. The finite difference technique was applied to find the velocity profiles, variation of pressure in the radial coordinate direction. Calculation has been done for different annular gap values and Casson number. The compared results for different special cases was made and observed to be concordant


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 261 ◽  
Author(s):  
Jickky Palmae Sarathy ◽  
Gerhard Gruber ◽  
Thomas Dick

Bedaquiline (BDQ) inhibits ATP generation in Mycobacterium tuberculosis by interfering with the F-ATP synthase activity. Two mechanisms of action of BDQ are broadly accepted. A direct mechanism involves BDQ binding to the enzyme’s c-ring to block its rotation, thus inhibiting ATP synthesis in the enzyme’s catalytic α3β3-headpiece. An indirect mechanism involves BDQ uncoupling electron transport in the electron transport chain from ATP synthesis at the F-ATP synthase. In a recently uncovered second direct mechanism, BDQ binds to the enzyme’s ε-subunit to disrupt its ability to link c-ring rotation to ATP synthesis at the α3β3-headpiece. However, this mechanism is controversial as the drug’s binding affinity for the isolated ε-subunit protein is moderate and spontaneous resistance mutants in the ε-subunit cannot be isolated. Recently, the new, structurally distinct BDQ analogue TBAJ-876 was utilized as a chemical probe to revisit BDQ’s mechanisms of action. In this review, we first summarize discoveries on BDQ’s mechanisms of action and then describe the new insights derived from the studies of TBAJ-876. The TBAJ-876 investigations confirm the c-ring as a target, while also supporting a functional role for targeting the ε-subunit. Surprisingly, the new findings suggest that the uncoupler mechanism does not play a key role in BDQ’s anti-mycobacterial activity.


Sign in / Sign up

Export Citation Format

Share Document