galaxy interactions
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 18)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 923 (2) ◽  
pp. 205
Author(s):  
Hassen M. Yesuf ◽  
Luis C. Ho ◽  
S. M. Faber

Abstract The morphology and structure of galaxies reflect their star formation and assembly histories. We use the framework of mutual information (MI) to quantify the interdependence among several structural variables and to rank them according to their relevance for predicting the specific star formation rate (SSFR) by comparing the MI of the predictor variables with the SSFR and penalizing variables that are redundant. We apply this framework to study ∼3700 face-on star-forming galaxies (SFGs) with varying degrees of bulge dominance and central concentration and with stellar mass M ⋆ ≈ 109 M ⊙−5 × 1011 M ⊙ at redshift z = 0.02–0.12. We use the Sloan Digital Sky Survey (SDSS) Stripe 82 deep i-band imaging data, which improve measurements of asymmetry and bulge dominance indicators. We find that star-forming galaxies are a multiparameter family. In addition to M ⋆, asymmetry emerges as the most powerful predictor of SSFR residuals of SFGs, followed by bulge prominence/concentration. Star-forming galaxies with higher asymmetry and stronger bulges have higher SSFR at a given M ⋆. The asymmetry reflects both irregular spiral arms and lopsidedness in seemingly isolated SFGs and structural perturbations by galaxy interactions or mergers.


2021 ◽  
Vol 922 (1) ◽  
pp. L17
Author(s):  
Hora D. Mishra ◽  
Xinyu Dai ◽  
Eduardo Guerras

Abstract The abundance of active galactic nuclei (AGN) in cosmic voids is relatively unexplored in the literature, but can potentially provide new constraints on the environmental dependence of AGN activity and the AGN-host coevolution. We investigated AGN fractions in one of the largest samples of optically selected cosmic voids from Sloan Digital Sky Survey Data Release 12 for redshift range 0.2–0.7 for moderately bright and bright AGN. We separated inner and outer void regions based on the void size, given by its effective void radius. We classified galaxies at a distance <0.6 R eff as inner void members and galaxies in the interval 0.6 < R/R eff < 1.3 as outer void galaxies. We found higher average fractions in the inner voids (4.9 ± 0.7)% than for their outer counterparts (3.1 ± 0.1)% at z > 0.42, which clearly indicates an environmental dependence. This conclusion was confirmed upon further separating the data in narrower void-centric distance bins and measured a significant decrease in AGN activity from inner to outer voids for z > 0.42. At low redshifts (z < 0.42), we find very weak dependence on the environment for the inner and outer regions for two out of three bins. We argue that the higher fraction in low-density regions close to void centers relative to their outer counterparts observed in the two higher-redshift bins suggests that more efficient galaxy interactions may occur at a one-to-one level in voids that may be suppressed in denser environments due to higher velocity dispersions. It could also indicate less prominent ram pressure stripping in voids or some intrinsic host or void environment properties.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 50 ◽  
Author(s):  
Benjamin M. Roberts ◽  
Andrei Derevianko

Dark matter may be composed of self-interacting ultralight quantum fields that form macroscopic objects. An example of which includes Q-balls, compact non-topological solitons predicted by a range of theories that are viable dark matter candidates. As the Earth moves through the galaxy, interactions with such objects may leave transient perturbations in terrestrial experiments. Here we propose a new dark matter signature: an asymmetry (and other non-Gaussianities) that may thereby be induced in the noise distributions of precision quantum sensors, such as atomic clocks, magnetometers, and interferometers. Further, we demonstrate that there would be a sizeable annual modulation in these signatures due to the annual variation of the Earth velocity with respect to dark matter halo. As an illustration of our formalism, we apply our method to 6 years of data from the atomic clocks on board GPS satellites and place constraints on couplings for macroscopic dark matter objects with radii R<104km, the region that is otherwise inaccessible using relatively sparse global networks.


2021 ◽  
Vol 503 (1) ◽  
pp. 726-742
Author(s):  
Shengdong Lu ◽  
Dandan Xu ◽  
Yunchong Wang ◽  
Yanmei Chen ◽  
Ling Zhu ◽  
...  

ABSTRACT A key feature of a large population of low-mass, late-type disc galaxies are star-forming discs with exponential light distributions. They are typically also associated with thin and flat morphologies, blue colours, and dynamically cold stars moving along circular orbits within co-planar thin gas discs. However, the latter features do not necessarily always imply the former, in fact, a variety of different kinematic configurations do exist. In this work, we use the cosmological hydrodynamical IllustrisTNG simulation to study the nature and origin of dynamically hot, sometimes even counter-rotating, star-forming disc galaxies in the lower stellar mass range (between $5\times 10^9\, \mathrm{M_{\odot }}$ and $2\times 10^{10}\, \mathrm{M_{\odot }}$). We find that being dynamically hot arises in most cases as an induced transient state, for example due to galaxy interactions and merger activities, rather than as an age-dependent evolutionary phase of star-forming disc galaxies. The dynamically hot but still actively star-forming discs show a common feature of hosting kinematically misaligned gas and stellar discs, and centrally concentrated on-going star formation. The former is often accompanied by disturbed gas morphologies, while the latter is reflected in low gas and stellar spins in comparison to their dynamically cold, normal disc counterparts. Interestingly, observed galaxies from MaNGA with kinematic misalignment between gas and stars show remarkably similar general properties as the IllustrisTNG galaxies, and therefore are plausible real-world counterparts. In turn, this allows us to make predictions for the stellar orbits and gas properties of these misaligned galaxies.


2020 ◽  
Vol 904 (2) ◽  
pp. 107
Author(s):  
Ekta A. Shah ◽  
Jeyhan S. Kartaltepe ◽  
Christina T. Magagnoli ◽  
Isabella G. Cox ◽  
Caleb T. Wetherell ◽  
...  

2020 ◽  
Vol 501 (1) ◽  
pp. 137-145
Author(s):  
Katelyn Horstman ◽  
Alice E Shapley ◽  
Ryan L Sanders ◽  
Bahram Mobasher ◽  
Naveen A Reddy ◽  
...  

ABSTRACT We study the properties of 55 morphologically-identified merging galaxy systems at z ∼ 2. These systems are flagged as mergers based on features such as tidal tails, double nuclei, and asymmetry. Our sample is drawn from the MOSFIRE Deep Evolution Field (MOSDEF) survey, along with a control sample of isolated galaxies at the same redshift. We consider the relationships between stellar mass, star formation rate (SFR), and gas-phase metallicity for both merging and non-merging systems. In the local universe, merging systems are characterized by an elevated SFR and depressed metallicity compared to isolated systems at a given mass. Our results indicate SFR enhancement and metallicity deficit for merging systems relative to non-merging systems for a fixed stellar mass at z ∼ 2, though larger samples are required to establish these preliminary results with higher statistical significance. In future work, it will be important to establish if the enhanced SFR and depressed metallicity in high-redshift mergers deviate from the ‘fundamental metallicity relation,’ as is observed in mergers in the local universe, and therefore shed light on gas flows during galaxy interactions.


2020 ◽  
Vol 500 (2) ◽  
pp. 1741-1754
Author(s):  
Kai Zhang ◽  
Jingwen Wu ◽  
Di Li ◽  
Chao-Wei Tsai ◽  
Lister Staveley-Smith ◽  
...  

ABSTRACT The Five-hundred-meter Aperture Spherical radio Telescope (FAST) has started the Commensal Radio Astronomy FasT Survey (CRAFTS). In this paper, we use the technical parameters of FAST derived from commissioning observations to simulate the completeness function for extragalactic H i survey of CRAFTS, H i galaxies from two kinds of mock catalogues are selected. One is generated by Monte Carlo simulation based on the interpolated mass–velocity width function of the ALFALFA $100{{\ \rm per\ cent}}$ (a.k.a. α.100) catalogue. The other is constructed by semi-analytical N-body simulation based on the ΛCDM model. Our results suggest that a two-pass CRAFTS extragalactic H i survey will be able to detect nearly 4.8 × 105 galaxies, from which the ‘faint end’ slope of the H i mass function (HIMF) can be recovered to $\mathrm{10^{7}\, M_{\odot }}$ and the ‘knee mass’ of the HIMF can be measured to a redshift of 0.1. Considering the radio frequency interference status and sensitivity limitation, CRAFTS will be efficient in detecting H i galaxies at redshifts below 0.1, which implies a tremendous potential in exploring the galaxy interactions in different environments and the spatial distribution of H i galaxies in the local universe.


Author(s):  
Jorge Moreno ◽  
Paul Torrey ◽  
Sara L Ellison ◽  
David R Patton ◽  
Connor Bottrell ◽  
...  

Abstract We investigate the spatial structure and evolution of star formation and the interstellar medium (ISM) in interacting galaxies. We use an extensive suite of parsec-scale galaxy merger simulations (stellar mass ratio = 2.5:1), which employs the ’Feedback In Realistic Environments-2’ model (fire-2). This framework resolves star formation, feedback processes, and the multi-phase structure of the ISM. We focus on the galaxy-pair stages of interaction. We find that close encounters substantially augment cool (HI) and cold-dense (H2) gas budgets, elevating the formation of new stars as a result. This enhancement is centrally-concentrated for the secondary galaxy, and more radially extended for the primary. This behaviour is weakly dependent on orbital geometry. We also find that galaxies with elevated global star formation rate (SFR) experience intense nuclear SFR enhancement, driven by high levels of either star formation efficiency (SFE) or available cold-dense gas fuel. Galaxies with suppressed global SFR also contain a nuclear cold-dense gas reservoir, but low SFE levels diminish SFR in the central region. Concretely, in the majority of cases, SFR-enhancement in the central kiloparsec is fuel-driven (55% for the secondary, 71% for the primary) - whilst central SFR-suppression is efficiency-driven (91% for the secondary, 97% for the primary). Our numerical predictions underscore the need of substantially larger, and/or merger-dedicated, spatially-resolved galaxy surveys - capable of examining vast and diverse samples of interacting systems - coupled with multi-wavelength campaigns aimed to capture their internal ISM structure.


2020 ◽  
Vol 893 (1) ◽  
pp. L3
Author(s):  
Huanian Zhang ◽  
Taotao Fang ◽  
Dennis Zaritsky ◽  
Peter Behroozi ◽  
Jessica Werk ◽  
...  

2020 ◽  
Vol 636 ◽  
pp. L12 ◽  
Author(s):  
E. Järvelä ◽  
M. Berton ◽  
S. Ciroi ◽  
E. Congiu ◽  
A. Lähteenmäki ◽  
...  

It has been often suggested that a tangible relation exists between relativistic jets in active galactic nuclei (AGN) and the morphology of their host galaxies. In particular, relativistic jets may commonly be related to merging events. Here we present for the first time a detailed spectroscopic and morphological analysis of a Seyfert galaxy, SDSS J211852.96−073227.5, at z = 0.26. This source has previously been classified as a gamma-ray emitting narrow-line Seyfert 1 galaxy. We re-observed it with the 6.5 m Clay Telescope and these new, high-quality spectroscopic data have revealed that it is actually an intermediate-type Seyfert galaxy. Furthermore, the results of modelling the Ks-band near-infrared images obtained with the 6.5 m Baade Telescope indicate that the AGN is hosted by a late-type galaxy in an interacting system, strengthening the suggested connection between galaxy interactions and relativistic jets.


Sign in / Sign up

Export Citation Format

Share Document