multiserver queues
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 4)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jing Dong ◽  
Rouba Ibrahim

The shortest-remaining-processing-time (SRPT) scheduling policy has been extensively studied, for more than 50 years, in single-server queues with infinitely patient jobs. Yet, much less is known about its performance in multiserver queues. In this paper, we present the first theoretical analysis of SRPT in multiserver queues with abandonment. In particular, we consider the [Formula: see text] queue and demonstrate that, in the many-sever overloaded regime, performance in the SRPT queue is equivalent, asymptotically in steady state, to a preemptive two-class priority queue where customers with short service times (below a threshold) are served without wait, and customers with long service times (above a threshold) eventually abandon without service. We prove that the SRPT discipline maximizes, asymptotically, the system throughput, among all scheduling disciplines. We also compare the performance of the SRPT policy to blind policies and study the effects of the patience-time and service-time distributions. This paper was accepted by Baris Ata, stochastic models & simulation.


2019 ◽  
Vol 36 (1) ◽  
pp. 354-364 ◽  
Author(s):  
Frederico R. B. Cruz ◽  
Roberto C. Quinino ◽  
Linda L. Ho

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Emilio Suyama ◽  
Roberto C. Quinino ◽  
Frederico R. B. Cruz

Estimators for the parameters of the Markovian multiserver queues are presented, from samples that are the number of clients in the system at arbitrary points and their sojourn times. As estimation in queues is a recognizably difficult inferential problem, this study focuses on the estimators for the arrival rate, the service rate, and the ratio of these two rates, which is known as the traffic intensity. Simulations are performed to verify the quality of the estimations for sample sizes up to 400. This research also relates notable new insights, for example, that the maximum likelihood estimator for the traffic intensity is equivalent to its moment estimator. Some limitations of the results are presented along with a detailed numerical example and topics for future developments in this research area.


2017 ◽  
Vol 86 (3-4) ◽  
pp. 277-299 ◽  
Author(s):  
Marko A. A. Boon ◽  
Onno J. Boxma ◽  
Offer Kella ◽  
Masakiyo Miyazawa

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Anoop N. Nair ◽  
M. J. Jacob

We analyze an s,S inventory with positive service time and retrial of demands by considering the inventory as servers of a multiserver queuing system. Demands arrive according to a Poisson process and service time distribution is exponential. On each service completion, the number of demands in the system as well as the number of inventories (servers) is reduced by one. When all servers are busy, new arrivals join an orbit from which they try to access the service at an exponential rate. Using matrix geometric methods the steady state joint distribution of the demands and inventory has been analyzed and a numerical illustration is given.


Sign in / Sign up

Export Citation Format

Share Document