mtase activity
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 23)

H-INDEX

13
(FIVE YEARS 4)

2021 ◽  
Vol 118 (49) ◽  
pp. e2108709118
Author(s):  
Natacha S. Ogando ◽  
Priscila El Kazzi ◽  
Jessika C. Zevenhoven-Dobbe ◽  
Brenda W. Bontes ◽  
Alice Decombe ◽  
...  

As coronaviruses (CoVs) replicate in the host cell cytoplasm, they rely on their own capping machinery to ensure the efficient translation of their messenger RNAs (mRNAs), protect them from degradation by cellular 5′ exoribonucleases (ExoNs), and escape innate immune sensing. The CoV nonstructural protein 14 (nsp14) is a bifunctional replicase subunit harboring an N-terminal 3′-to-5′ ExoN domain and a C-terminal (N7-guanine)–methyltransferase (N7-MTase) domain that is presumably involved in viral mRNA capping. Here, we aimed to integrate structural, biochemical, and virological data to assess the importance of conserved N7-MTase residues for nsp14’s enzymatic activities and virus viability. We revisited the crystal structure of severe acute respiratory syndrome (SARS)–CoV nsp14 to perform an in silico comparative analysis between betacoronaviruses. We identified several residues likely involved in the formation of the N7-MTase catalytic pocket, which presents a fold distinct from the Rossmann fold observed in most known MTases. Next, for SARS-CoV and Middle East respiratory syndrome CoV, site-directed mutagenesis of selected residues was used to assess their importance for in vitro enzymatic activity. Most of the engineered mutations abolished N7-MTase activity, while not affecting nsp14-ExoN activity. Upon reverse engineering of these mutations into different betacoronavirus genomes, we identified two substitutions (R310A and F426A in SARS-CoV nsp14) abrogating virus viability and one mutation (H424A) yielding a crippled phenotype across all viruses tested. Our results identify the N7-MTase as a critical enzyme for betacoronavirus replication and define key residues of its catalytic pocket that can be targeted to design inhibitors with a potential pan-coronaviral activity spectrum.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xuedong Wu ◽  
Yuetian Zhang ◽  
Mingshu Wang ◽  
Shun Chen ◽  
Mafeng Liu ◽  
...  

The 5’ end of the flavivirus genome contains a type 1 cap structure formed by sequential N-7 and 2’-O methylations by viral methyltransferase (MTase). Cap methylation of flavivirus genome is an essential structural modification to ensure the normal proliferation of the virus. Tembusu virus (TMUV) (genus Flavivirus) is a causative agent of duck egg drop syndrome and has zoonotic potential. Here, we identified the in vitro activity of TMUV MTase and determined the effect of K61-D146-K182-E218 enzymatic tetrad on N-7 and 2’-O methylation. The entire K61-D146-K182-E218 motif is essential for 2’-O MTase activity, whereas N-7 MTase activity requires only D146. To investigate its phenotype, the single point mutation (K61A, D146A, K182A or E218A) was introduced into TMUV replicon (pCMV-Rep-NanoLuc) and TMUV infectious cDNA clone (pACYC-TMUV). K-D-K-E mutations reduced the replication ability of replicon. K61A, K182A and E218A viruses were genetically stable, whereas D146A virus was unstable and reverted to WT virus. Mutant viruses were replication and virulence impaired, showing reduced growth and attenuated cytopathic effects and reduced mortality of duck embryos. Molecular mechanism studies showed that the translation efficiency of mutant viruses was inhibited and a higher host innate immunity was induced. Furthermore, we found that the translation inhibition of MTase-deficient viruses was caused by a defect in N-7 methylation, whereas the absence of 2’-O methylation did not affect viral translation. Taken together, our data validate the debilitating mechanism of MTase-deficient avian flavivirus and reveal an important role for cap-methylation in viral translation, proliferation, and escape from innate immunity.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1722
Author(s):  
Roberto Benoni ◽  
Petra Krafcikova ◽  
Marek R. Baranowski ◽  
Joanna Kowalska ◽  
Evzen Boura ◽  
...  

The ongoing COVID-19 pandemic exemplifies the general need to better understand viral infections. The positive single-strand RNA genome of its causative agent, the SARS coronavirus 2 (SARS-CoV-2), encodes all viral enzymes. In this work, we focused on one particular methyltransferase (MTase), nsp16, which, in complex with nsp10, is capable of methylating the first nucleotide of a capped RNA strand at the 2′-O position. This process is part of a viral capping system and is crucial for viral evasion of the innate immune reaction. In light of recently discovered non-canonical RNA caps, we tested various dinucleoside polyphosphate-capped RNAs as substrates for nsp10-nsp16 MTase. We developed an LC-MS-based method and discovered four types of capped RNA (m7Gp3A(G)- and Gp3A(G)-RNA) that are substrates of the nsp10-nsp16 MTase. Our technique is an alternative to the classical isotope labelling approach for the measurement of 2′-O-MTase activity. Further, we determined the IC50 value of sinefungin to illustrate the use of our approach for inhibitor screening. In the future, this approach may be an alternative technique to the radioactive labelling method for screening inhibitors of any type of 2′-O-MTase.


2021 ◽  
pp. 247255522110262
Author(s):  
Kanchan Devkota ◽  
Matthieu Schapira ◽  
Sumera Perveen ◽  
Aliakbar Khalili Yazdi ◽  
Fengling Li ◽  
...  

The COVID-19 pandemic has clearly brought the healthcare systems worldwide to a breaking point, along with devastating socioeconomic consequences. The SARS-CoV-2 virus, which causes the disease, uses RNA capping to evade the human immune system. Nonstructural protein (nsp) 14 is one of the 16 nsps in SARS-CoV-2 and catalyzes the methylation of the viral RNA at N7-guanosine in the cap formation process. To discover small-molecule inhibitors of nsp14 methyltransferase (MTase) activity, we developed and employed a radiometric MTase assay to screen a library of 161 in-house synthesized S-adenosylmethionine (SAM) competitive MTase inhibitors and SAM analogs. Among six identified screening hits, SS148 inhibited nsp14 MTase activity with an IC50 value of 70 ± 6 nM and was selective against 20 human protein lysine MTases, indicating significant differences in SAM binding sites. Interestingly, DS0464 with an IC50 value of 1.1 ± 0.2 µM showed a bisubstrate competitive inhibitor mechanism of action. DS0464 was also selective against 28 out of 33 RNA, DNA, and protein MTases. The structure–activity relationship provided by these compounds should guide the optimization of selective bisubstrate nsp14 inhibitors and may provide a path toward a novel class of antivirals against COVID-19, and possibly other coronaviruses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kelly M. Zatopek ◽  
Brett W. Burkhart ◽  
Richard D. Morgan ◽  
Alexandra M. Gehring ◽  
Kristin A. Scott ◽  
...  

Thermococcus kodakarensis (T. kodakarensis), a hyperthermophilic, genetically accessible model archaeon, encodes two putative restriction modification (R-M) defense systems, TkoI and TkoII. TkoI is encoded by TK1460 while TkoII is encoded by TK1158. Bioinformative analysis suggests both R-M enzymes are large, fused methyltransferase (MTase)-endonuclease polypeptides that contain both restriction endonuclease (REase) activity to degrade foreign invading DNA and MTase activity to methylate host genomic DNA at specific recognition sites. In this work, we demonsrate T. kodakarensis strains deleted for either or both R-M enzymes grow more slowly but display significantly increased competency compared to strains with intact R-M systems, suggesting that both TkoI and TkoII assist in maintenance of genomic integrity in vivo and likely protect against viral- or plasmid-based DNA transfers. Pacific Biosciences single molecule real-time (SMRT) sequencing of T. kodakarensis strains containing both, one or neither R-M systems permitted assignment of the recognition sites for TkoI and TkoII and demonstrated that both R-M enzymes are TypeIIL; TkoI and TkoII methylate the N6 position of adenine on one strand of the recognition sequences GTGAAG and TTCAAG, respectively. Further in vitro biochemical characterization of the REase activities reveal TkoI and TkoII cleave the DNA backbone GTGAAG(N)20/(N)18 and TTCAAG(N)10/(N)8, respectively, away from the recognition sequences, while in vitro characterization of the MTase activities reveal transfer of tritiated S-adenosyl methionine by TkoI and TkoII to their respective recognition sites. Together these results demonstrate TkoI and TkoII restriction systems are important for protecting T. kodakarensis genome integrity from invading foreign DNA.


Author(s):  
Weibao Song ◽  
Hongjuan Zhang ◽  
Yu Zhang ◽  
Ying Chen ◽  
Yuan Lin ◽  
...  

The recurring outbreak of Zika virus (ZIKV) worldwide makes an emergent demand for novel, safe and efficacious anti-ZIKV agents. ZIKV non-structural protein 5 (NS5) methyltransferase (MTase), which is essential for viral replication, is regarded as a potential drug target. In our study, a luminescence-based methyltransferase assay was used to establish the ZIKV NS5 MTase inhibitor screening model. Through screening a natural product library, we found theaflavin, a polyphenol derived from tea, could inhibit ZIKV NS5 MTase activity with a 50% inhibitory concentration (IC50) of 10.10 μM. Molecular docking and site-directed mutagenesis analyses identified D146 as the key amino acid in the interaction between ZIKV NS5 MTase and theaflavin. The SPR assay indicated that theaflavin had a stronger binding activity with ZIKV NS5 wild-type (WT)-MTase than it with D146A-MTase. Moreover, theaflavin exhibited a dose dependent inhibitory effect on ZIKV replication with a 50% effective concentration (EC50) of 8.19 μM. All these results indicate that theaflavin is likely to be a promising lead compound against ZIKV.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 538
Author(s):  
Li-Jen Chang ◽  
Tsung-Hsien Chen

Several life-threatening viruses have recently appeared, including the coronavirus, infecting a variety of human and animal hosts and causing a range of diseases like human upper respiratory tract infections. They not only cause serious human and animal deaths, but also cause serious public health problems worldwide. Currently, seven species are known to infect humans, namely SARS-CoV-2, MERS-CoV, SARS-CoV, HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1. The coronavirus nonstructural protein 16 (NSP16) structure is similar to the 5′-end capping system of mRNA used by eukaryotic hosts and plays a vital role in evading host immunity response and protects the nascent viral mRNA from degradation. NSP16 is also well-conserved among related coronaviruses and requires its binding partner NSP10 to activate its enzymatic activity. With the continued threat of viral emergence highlighted by human coronaviruses and SARS-CoV-2, mutant strains continue to appear, affecting the highly conserved NSP16: this provides a possible therapeutic approach applicable to any novel coronavirus. To this end, current information on the 2′-O-MTase activity mechanism, the differences between NSP16 and NSP10 in human coronaviruses, and the current potential prevention and treatment strategies related to NSP16 are summarized in this review.


2021 ◽  
Author(s):  
Sultan F. Alnomasy ◽  
Bader S. Alotaibi ◽  
Ziyad M. Aldosari ◽  
Ahmed H. Mujamammi ◽  
Pragya Anand ◽  
...  

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged in late 2019, causes COVID-19, a disease that has been spreading rapidly worldwide. In human lung epithelial cells and monocytes, RLF-100 (aviptadil) has been found to inhibit the RNA replication machinery of SARS-CoV-2, which includes several non-structural proteins (nsp) that play essential roles in synthesizing and replicating viral RNA. This virus is unique in requiring nsp10 and nsp16 for methyltransferase (MTase) activity. This enzyme is essential for RNA stability, protein translation, and viral ability to escape the host's immune recognition. Therefore, we aimed to use bioinformatics tools to analyze aviptadil's inhibitory effect on the SARS-CoV-2 nsp10/nsp16 complex. We present a comprehensive, in silico-generated picture showing how aviptadil may interact with the nsp complex. Specifically, our model predicts how the initial binding of aviptadil to nsp10 and nsp16 may occur. This knowledge can assist drug development efforts against SARS-CoV-2 by providing more target information against nsp16.


2021 ◽  
Author(s):  
Margarida Saramago ◽  
Cátia Bárria ◽  
Vanessa Costa ◽  
Caio S. Souza ◽  
Sandra C. Viegas ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has triggered a global pandemic with devastating consequences for health-care and social-economic systems. Thus, the understanding of fundamental aspects of SARS-CoV-2 is of extreme importance. In this work, we have focused our attention on the viral ribonuclease (RNase) nsp14, since this protein was considered one of the most interferon antagonists from SARS-CoV-2, and affects viral replication. This RNase is a multifunctional protein that harbors two distinct activities, an N-terminal 3'-to-5' exoribonuclease (ExoN) and a C-terminal N7-methyltransferase (N7-MTase), both with critical roles in coronaviruses life cycle. Namely, SARS-CoV-2 nsp14 ExoN knockout mutants are non-viable, indicating nsp14 as a prominent target for the development of antiviral drugs. Nsp14 ExoN activity is stimulated through the interaction with the nsp10 protein, which has a pleiotropic function during viral replication. In this study, we have performed the first biochemical characterization of the complex nsp14-nsp10 from SARS-CoV-2. Here we confirm the 3'-5' exoribonuclease and MTase activities of nsp14 in this new Coronavirus, and the critical role of nsp10 in upregulating the nsp14 ExoN activity in vitro. Furthermore, we demonstrate that SARS-CoV-2 nsp14 N7-MTase activity is functionally independent of the ExoN activity. The nsp14 MTase activity also seems to be independent of the presence of nsp10 cofactor, contrarily to nsp14 ExoN. Until now, there is no available structure for the SARS-CoV-2 nsp14-nsp10 complex. As such, we have modelled the SARS-CoV-2 nsp14-nsp10 complex based on the 3D structure of the complex from SARS-CoV (PDB ID 5C8S). We also have managed to map key nsp10 residues involved in its interaction with nsp14, all of which are also shown to be essential for stimulation of the nsp14 ExoN activity. This reinforces the idea that a stable interaction between nsp10 and nsp14 is strictly required for the nsp14-mediated ExoN activity of SARS-CoV-2, as observed for SARS-CoV. We have studied the role of conserved DEDD catalytic residues of SARS-CoV-2 nsp14 ExoN. Our results show that motif I of ExoN domain is essential for the nsp14 function contrasting to the functionality of these conserved catalytic residues in SARS-CoV, and in the Middle East respiratory syndrome coronavirus (MERS). The differences here revealed can have important implications regarding the specific pathogenesis of SARS-CoV-2. The nsp10-nsp14 interface is a recognized attractive target for antivirals against SARS-CoV-2 and other coronaviruses. This work has unravelled a basis for discovering inhibitors targeting the specific amino acids here reported, in order to disrupt the assembly of this complex and interfere with coronaviruses replication.


2020 ◽  
Vol 7 ◽  
Author(s):  
Md Fulbabu Sk ◽  
Nisha Amarnath Jonniya ◽  
Rajarshi Roy ◽  
Sayan Poddar ◽  
Parimal Kar

Recently, a highly contagious novel coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has emerged, posing a global threat to public health. Identifying a potential target and developing vaccines or antiviral drugs is an urgent demand in the absence of approved therapeutic agents. The 5′-capping mechanism of eukaryotic mRNA and some viruses such as coronaviruses (CoVs) are essential for maintaining the RNA stability and protein translation in the virus. SARS-CoV-2 encodes S-adenosyl-L-methionine (SAM) dependent methyltransferase (MTase) enzyme characterized by nsp16 (2′-O-MTase) for generating the capped structure. The present study highlights the binding mechanism of nsp16 and nsp10 to identify the role of nsp10 in MTase activity. Furthermore, we investigated the conformational dynamics and energetics behind the binding of SAM to nsp16 and nsp16/nsp10 heterodimer by employing molecular dynamics simulations in conjunction with the Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) method. We observed from our simulations that the presence of nsp10 increases the favorable van der Waals and electrostatic interactions between SAM and nsp16. Thus, nsp10 acts as a stimulator for the strong binding of SAM to nsp16. The hydrophobic interactions were predominately identified for the nsp16-nsp10 interactions. Also, the stable hydrogen bonds between Ala83 (nsp16) and Tyr96 (nsp10), and between Gln87 (nsp16) and Leu45 (nsp10) play a vital role in the dimerization of nsp16 and nsp10. Besides, Computational Alanine Scanning (CAS) mutagenesis was performed, which revealed hotspot mutants, namely I40A, V104A, and R86A for the dimer association. Hence, the dimer interface of nsp16/nsp10 could also be a potential target in retarding the 2′-O-MTase activity in SARS-CoV-2. Overall, our study provides a comprehensive understanding of the dynamic and thermodynamic process of binding nsp16 and nsp10 that will contribute to the novel design of peptide inhibitors based on nsp16.


Sign in / Sign up

Export Citation Format

Share Document