challenge study
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 69)

H-INDEX

32
(FIVE YEARS 4)

Author(s):  
Shunjiro Azuma ◽  
Akira Kurita ◽  
Toshiro Katayama ◽  
Kosuke Iwano ◽  
Kei Iimori ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Adam Tully Waickman ◽  
Kaitlin Victor ◽  
Krista L Newell ◽  
Tao L Li ◽  
Heather Friberg ◽  
...  

Vaccine-elicited SARS-CoV-2 antibody responses are an established correlate of protection against viral infection in humans and non-human primates. However, it is less clear that vaccine-induced immunity is able to limit infection-elicited inflammation in the lower respiratory tract. To assess this, we collected bronchoalveolar lavage fluid samples post-SARS-CoV-2 strain USA-WA1/2020 challenge from rhesus macaques vaccinated with mRNA-1273 in a dose-reduction study. Single-cell transcriptomic profiling revealed a broad cellular landscape 48 hours post-challenge with distinct inflammatory signatures that correlated with viral RNA burden in the lower respiratory tract. These inflammatory signatures included phagocyte-restricted expression of chemokines such as CXCL10 (IP10) and CCL3 (MIP-1A) and the broad expression of interferon-induced genes such as MX1, ISG15, and IFIT1. Induction of these inflammatory profiles was suppressed by prior mRNA-1273 vaccination in a dose-dependent manner, and negatively correlated with pre-challenge serum and lung antibody titers against SARS-CoV-2 spike. These observations were replicated and validated in a second independent macaque challenge study using the B.1.351/beta-variant of SARS-CoV-2. These data support a model wherein vaccine-elicited antibody responses restrict viral replication following SARS-CoV-2 exposure, including limiting viral dissemination to the lower respiratory tract and infection-mediated inflammation and pathogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Thi Nhu Mai Tran ◽  
Bruce Pearson May ◽  
Trong Thuan Ung ◽  
Mai Khoi Nguyen ◽  
Thi Thuy Trang Nguyen ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global health concern. The development of vaccines with high immunogenicity and safety is crucial for controlling the global COVID-19 pandemic and preventing further illness and fatalities. Here, we report the development of a SARS-CoV-2 vaccine candidate, Nanocovax, based on recombinant protein production of the extracellular (soluble) portion of the spike (S) protein of SARS-CoV-2. The results showed that Nanocovax induced high levels of S protein-specific IgG and neutralizing antibodies in three animal models: BALB/c mouse, Syrian hamster, and a non-human primate (Macaca leonina). In addition, a viral challenge study using the hamster model showed that Nanocovax protected the upper respiratory tract from SARS-CoV-2 infection. Nanocovax did not induce any adverse effects in mice (Mus musculus var. albino) and rats (Rattus norvegicus). These preclinical results indicate that Nanocovax is safe and effective.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ria Lassaunière ◽  
Charlotta Polacek ◽  
Gregers J. Gram ◽  
Anders Frische ◽  
Jeanette Linnea Tingstedt ◽  
...  

AbstractNew generation plasmid DNA vaccines may be a safe, fast and simple emergency vaccine platform for preparedness against emerging viral pathogens. Applying platform optimization strategies, we tested the pre-clinical immunogenicity and protective effect of a candidate DNA plasmid vaccine specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The DNA vaccine induced spike-specific binding IgG and neutralizing antibodies in mice, rabbits, and rhesus macaques together with robust Th1 dominant cellular responses in small animals. Intradermal and intramuscular needle-free administration of the DNA vaccine yielded comparable immune responses. In a vaccination-challenge study of rhesus macaques, the vaccine demonstrated protection from viral replication in the lungs following intranasal and intratracheal inoculation with SARS-CoV-2. In conclusion, the candidate plasmid DNA vaccine encoding the SARS-CoV-2 spike protein is immunogenic in different models and confers protection against lung infection in nonhuman primates. Further evaluation of this DNA vaccine candidate in clinical trials is warranted.


2021 ◽  
pp. 2101932
Author(s):  
Leah Cuthbertson ◽  
Phillip James ◽  
Maximillian S. Habibi ◽  
Ryan S. Thwaites ◽  
Allan Paras ◽  
...  

2021 ◽  
pp. 1-8
Author(s):  
Neal R. Swerdlow ◽  
Juliana E. Kotz ◽  
Yash B. Joshi ◽  
Jo Talledo ◽  
Joyce Sprock ◽  
...  

Memantine’s benefits in Alzheimer’s disease (AD) are modest and heterogeneous. We tested the feasibility of using sensitivity to acute memantine challenge to predict an individual’s clinical response. Eight participants completed a double-blind challenge study of memantine (placebo versus 20 mg) effects on autonomic, subjective, cognitive, and neurophysiological measures, followed by a 24-week unblinded active-dose therapeutic trial (10 mg bid). Study participation was well tolerated. Subgroups based on memantine sensitivity on specific laboratory measures differed in their clinical response to memantine, some by large effect sizes. It appears feasible to use biomarkers to predict clinical sensitivity to memantine.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gang Lu ◽  
Jiajun Ou ◽  
Siqi Cai ◽  
Zhiying Lai ◽  
Lintao Zhong ◽  
...  

Canine influenza virus (CIV) is an emerging virus that is associated with major hidden hazards to the canine population and public health. Until now, how canine uses its innate immunity to restrict CIV replication is seldomly investigated. Recently, studies on interferon-inducible transmembrane (IFITM) of several major hosts of influenza virus (human, chicken, duck, pig) indicated it can potently restrict the viral replication. Here, the gene locus of five previously annotated canine IFITM (caIFITM) genes was determined on chromosome 18 using multiple bioinformatics strategies, provisionally designated as caIFITM1, caIFITM2a, caIFITM2b, caIFITM3, and caIFITM5. An analysis on protein sequences between caIFITM and its homologs indicated they shared the same conserved amino acids important for the antiviral activity. Expression profile analysis showed that caIFITM was constitutively expressed in tissues and MDCK cell line. After treatment with interferon or infection with influenza virus, the expression level of caIFITM increased with different degrees in vitro. An animal challenge study demonstrated CIV infection resulted in upregulation of caIFITM in beagles. caIFITMs had a similar subcellular localization to their human homologs. caIFITM1 was present at the cell surface and caIFITM3 was present perinuclearly and colocalized with LAMP1-containing compartments. Finally, we generated A549 cell lines stably expressing caIFITM and challenged them with influenza virus. The result demonstrated caIFITM1, caIFITM2a, caIFITM2b, and caIFITM3 had a potent antiviral activity against influenza virus. Our study will help better understand the evolutional pattern of IFITM and its role in the host’s defense against virus infection.


2021 ◽  
Vol 39 ◽  
pp. 101076
Author(s):  
Robert W. Frenck ◽  
Valentino Conti ◽  
Pietro Ferruzzi ◽  
Augustin G.W. Ndiaye ◽  
Susan Parker ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 834
Author(s):  
José Carlos Mancera Gracia ◽  
Megan Smutzer ◽  
Lucas Taylor ◽  
Mónica Balasch ◽  
Meggan Bandrick

Porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (Mhyo) are important swine pathogens for which vaccination is a key control strategy. Three separate studies were performed to evaluate the duration of immunity (DOI) conferred by a novel vaccine combining PCV2a/PCV2b and Mhyo into a ready-to-use formulation. In each study, three-week-old naïve piglets were vaccinated (Day 0) and challenged 23-weeks later (Day 159) with either PCV2a, PCV2b or Mhyo. Pigs were euthanized three-to-four-weeks post-challenge. Vaccinated pigs had significantly lower PCV2 viremia from Day 168 until Day 175 (PCV2a study) or until euthanasia (PCV2b study), respectively. Fecal shedding was significantly lower for PCV2a-challenged from Day 171 until Day 178, and for PCV2b-challenged from Day 172 until euthanasia. In the PCV2a challenge study, there were no differences among vaccinates and controls in terms of percent of pigs positive for PCV2 immunohistochemistry, histiocytic replacement, or lymphoid depletion. However, significant differences for immunohistochemistry and histiocytic replacement, not lymphoid depletion, were observed among vaccinates and controls following PCV2b challenge. Vaccination supposed a significant reduction in the mean percentage of Mhyo-like lesions in the lung. Percentages of lung tissues positive for Mhyo via immunohistochemistry were 49.3% and 67.1% for vaccinated and control groups, respectively. One dose of the novel PCV2a/PCV2b/Mhyo vaccine conferred robust protection against challenge 23-weeks later for all three fractions.


2021 ◽  
Author(s):  
Thi Nhu Mai Tran ◽  
Bruce May ◽  
Thuan Trong Ung ◽  
Mai Khoi Nguyen ◽  
Thuy Trang Nguyen ◽  
...  

The Coronavirus disease-2019 (COVID-19) pandemic caused by the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), has become a dire global health concern. The development of vaccines with high immunogenicity and safety is crucial for control of the global COVID-19 pandemic and prevention of further illness and fatalities. Here, we report development of SARS-CoV-2 vaccine candidate, Nanocovax, based on recombinant protein production of the extracellular (soluble) portion of the S protein of SARS-CoV-2. The results showed that Nanocovax induced high levels of S protein-specific IgG, as well neutralizing antibody in three animal models including Balb/C mice, Syrian hamsters, and non-human primate (Macaca leonina). In addition, the viral challenge study using the hamster model showed that Nanocovax protected the upper respiratory tract from SARS-CoV-2 infection. No adverse effects were induced by Nanocovax in swiss mice (Musmusculus var. Albino), Rats (Rattus norvegicus), and New Zealand rabbits. These pre-clinical results indicated that Nanocovax is safe and effective


Sign in / Sign up

Export Citation Format

Share Document