agonist action
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 18)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Vol 7 (3) ◽  
pp. 93-100
Author(s):  
Ekaterina S. Karpushkina ◽  
Olga A. Zhdanova ◽  
Galina A. Batishcheva ◽  
Yulia A. Petukhova

Introduction: Acute poisoning by nasal decongestants is an important issue in pediatrics due to physiological and anatomical characteristics of the child’s body and pharmacokinetics of drugs in early childhood. Epidemiology: The number of poisonings by this group of drugs ranged from 4% to 39% during the period from 2000 to 2018. All the studies reported that the most severe degree of intoxication was observed in children aged 1–3 years. Mechanism of action of nasal decongestants: The peculiarity of selective alpha2-adrenergic agonists is that when taken orally, misused or overdosed, they lose their selectivity for the target receptor. As a result, the drug causes acute poisoning and most often this effect occurs in children and adolescents. Clinical features and diagnostic criteria: Clinical signs of acute poisoning can appear both as a result of an overdose of the nasal decongestants and due to a therapeutic use of the drug according to the instruction. The symptoms are manifested by hypothermia, skin pallor, bradycardia, arterial hypotension, profuse sweating, and acrocyanosis. Imidazoline receptors and new opportunities: It is assumed that toxic effect of topical decongestants occurs not only by activation of alpha2-adrenergic receptors, but also through their influence on the selective imidazoline receptors. Based on the structure of these drugs, it is assumed that imidazoline receptors are the primary binding site for these drugs. Conclusion: Understanding the described mechanisms of alpha2-adrenergic agonist action and peculiarities of the child’s symptoms in acute poisoning is necessary for the timely diagnosis and selection of the correct treatment strategy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anne-Marinette Cao ◽  
Robert B. Quast ◽  
Fataneh Fatemi ◽  
Philippe Rondard ◽  
Jean-Philippe Pin ◽  
...  

AbstractMuch hope in drug development comes from the discovery of positive allosteric modulators (PAM) that display target subtype selectivity and act by increasing agonist potency and efficacy. How such compounds can allosterically influence agonist action remains unclear. Metabotropic glutamate receptors (mGlu) are G protein-coupled receptors that represent promising targets for brain diseases, and for which PAMs acting in the transmembrane domain have been developed. Here, we explore the effect of a PAM on the structural dynamics of mGlu2 in optimized detergent micelles using single molecule FRET at submillisecond timescales. We show that glutamate only partially stabilizes the extracellular domains in the active state. Full activation is only observed in the presence of a PAM or the Gi protein. Our results provide important insights on the role of allosteric modulators in mGlu activation, by stabilizing the active state of a receptor that is otherwise rapidly oscillating between active and inactive states.


Author(s):  
Francisco Valdés ◽  
Bárbara Arévalo ◽  
Margarita Gutiérrez ◽  
Verónica García-Castillo ◽  
Rebeca Salgado-García ◽  
...  

Background: Adenosine is a natural nucleoside present in various organs and tissues, where it acts as a modulator of diverse physiological and pathophysiological processes. These actions are mediated by at least four G protein-coupled receptors, which are widely and differentially expressed in tissues. Interestingly, high concentrations of adenosine have been reported in a variety of tumors. In this context, the final output of adenosine in tumorigenesis will likely depend on the constellation of adenosine receptors expressed by tumor and stromal cells. Notably, activation of the A3 receptor can reduce the proliferative capacity of various cancer cells. Objective: The objective of this study is to describe the anti-proliferative effects of two previously synthesized adenosine derivatives with A3 agonist action (compounds 2b and 2f) through in vitro assays. Results: The antiproliferative effects of adenosine derivatives (after determining IC50 values) were comparable or even higher than those described for IB-MECA, a commercially available A3 agonist. Among possible mechanisms involved, apoptosis was found to be induced in MCF-7 cells but not in AGS or MDA-MB-231 cells. Surprisingly, we were unable to observe cellular senescence induction upon treatment with compounds 2b and 2f in any of the cell lines studied, although we cannot rule out other forms of cell cycle exit at this point. Conclusion: Both adenosine derivatives showed antiproliferative effects on gastric and breast cancer cell lines, and were able to induce apoptosis, at least in the MCF-7 cell line. Further studies will be necessary to unveil receptor specificity and mechanisms accounting for the antiproliferative properties of these novel semi-synthetic compounds.


2021 ◽  
pp. 174175
Author(s):  
Lu Yao ◽  
Zhuoyan Fan ◽  
Shiwen Han ◽  
Na Sun ◽  
Huilian Che

2021 ◽  
Vol 17 (2) ◽  
pp. e1008863
Author(s):  
Nicolas Lamassiaude ◽  
Berthine Toubate ◽  
Cédric Neveu ◽  
Pierre Charnet ◽  
Catherine Dupuy ◽  
...  

Control of infestation by cosmopolitan lice (Pediculus humanus) is increasingly difficult due to the transmission of parasites resistant to pediculicides. However, since the targets for pediculicides have no been identified in human lice so far, their mechanisms of action remain largely unknown. The macrocyclic lactone ivermectin is active against a broad range of insects including human lice. Isoxazolines are a new chemical class exhibiting a strong insecticidal potential. They preferentially act on the γ-aminobutyric acid (GABA) receptor made of the resistant to dieldrin (RDL) subunit and, to a lesser extent on glutamate-gated chloride channels (GluCls) in some species. Here, we addressed the pediculicidal potential of isoxazolines and deciphered the molecular targets of ivermectin and the ectoparasiticide lotilaner in the human body louse species Pediculus humanus humanus. Using toxicity bioassays, we showed that fipronil, ivermectin and lotilaner are efficient pediculicides on adult lice. The RDL (Phh-RDL) and GluCl (Phh-GluCl) subunits were cloned and characterized by two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes. Phh-RDL and Phh-GluCl formed functional homomeric receptors respectively gated by GABA and L-glutamate with EC50 values of 16.0 μM and 9.3 μM. Importantly, ivermectin displayed a super agonist action on Phh-GluCl, whereas Phh-RDL receptors were weakly affected. Reversally, lotilaner strongly inhibited the GABA-evoked currents in Phh-RDL with an IC50 value of 40.7 nM, whereas it had no effect on Phh-GluCl. We report here for the first time the insecticidal activity of isoxazolines on human ectoparasites and reveal the mode of action of ivermectin and lotilaner on GluCl and RDL channels from human lice. These results emphasize an expected extension of the use of the isoxazoline drug class as new pediculicidal agents to tackle resistant-louse infestations in humans.


Cell ◽  
2021 ◽  
Vol 184 (4) ◽  
pp. 957-968.e21 ◽  
Author(s):  
Jie Yu ◽  
Hongtao Zhu ◽  
Remigijus Lape ◽  
Timo Greiner ◽  
Juan Du ◽  
...  

2020 ◽  
Vol 152 (12) ◽  
Author(s):  
Jongyun Myeong ◽  
Lizbeth de la Cruz ◽  
Seung-Ryoung Jung ◽  
Jun-Hee Yeon ◽  
Byung-Chang Suh ◽  
...  

The dynamic metabolism of membrane phosphoinositide lipids involves several cellular compartments including the ER, Golgi, and plasma membrane. There are cycles of phosphorylation and dephosphorylation and of synthesis, transfer, and breakdown. The simplified phosphoinositide cycle comprises synthesis of phosphatidylinositol in the ER, transport, and phosphorylation in the Golgi and plasma membranes to generate phosphatidylinositol 4,5-bisphosphate, followed by receptor-stimulated hydrolysis in the plasma membrane and return of the components to the ER for reassembly. Using probes for specific lipid species, we have followed and analyzed the kinetics of several of these events during stimulation of M1 muscarinic receptors coupled to the G-protein Gq. We show that during long continued agonist action, polyphosphorylated inositol lipids are initially depleted but then regenerate while agonist is still present. Experiments and kinetic modeling reveal that the regeneration results from gradual but massive up-regulation of PI 4-kinase pathways rather than from desensitization of receptors. Golgi pools of phosphatidylinositol 4-phosphate and the lipid kinase PI4KIIIα (PI4KA) contribute to this homeostatic regeneration. This powerful acceleration, which may be at the level of enzyme activity or of precursor and product delivery, reveals strong regulatory controls in the phosphoinositide cycle.


2020 ◽  
Vol 883 ◽  
pp. 173252
Author(s):  
Hilda Loza-Rodríguez ◽  
Samuel Estrada-Soto ◽  
Francisco J. Alarcón-Aguilar ◽  
Fengyang Huang ◽  
Guillermo Aquino-Jarquín ◽  
...  

2020 ◽  
Vol 21 (16) ◽  
pp. 5728 ◽  
Author(s):  
Gunnar Kleinau ◽  
Nicolas A. Heyder ◽  
Ya-Xiong Tao ◽  
Patrick Scheerer

The melanocortin-4 receptor (MC4R) is a class A G protein-coupled receptor (GPCR), essential for regulation of appetite and metabolism. Pathogenic inactivating MC4R mutations are the most frequent cause of monogenic obesity, a growing medical and socioeconomic problem worldwide. The MC4R mediates either ligand-independent or ligand-dependent signaling. Agonists such as α-melanocyte-stimulating hormone (α-MSH) induce anorexigenic effects, in contrast to the endogenous inverse agonist agouti-related peptide (AgRP), which causes orexigenic effects by suppressing high basal signaling activity. Agonist action triggers the binding of different subtypes of G proteins and arrestins, leading to concomitant induction of diverse intracellular signaling cascades. An increasing number of experimental studies have unraveled molecular properties and mechanisms of MC4R signal transduction related to physiological and pathophysiological aspects. In addition, the MC4R crystal structure was recently determined at 2.75 Å resolution in an inactive state bound with a peptide antagonist. Underpinned by structural homology models of MC4R complexes simulating a presumably active-state conformation compared to the structure of the inactive state, we here briefly summarize the current understanding and key players involved in the MC4R switching process between different activity states. Finally, these perspectives highlight the complexity and plasticity in MC4R signaling regulation and identify gaps in our current knowledge.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Susanne Gerndt ◽  
Cheng-Chang Chen ◽  
Yu-Kai Chao ◽  
Yu Yuan ◽  
Sandra Burgstaller ◽  
...  

Ion selectivity is a defining feature of a given ion channel and is considered immutable. Here we show that ion selectivity of the lysosomal ion channel TPC2, which is hotly debated (Calcraft et al., 2009; Guo et al., 2017; Jha et al., 2014; Ruas et al., 2015; Wang et al., 2012), depends on the activating ligand. A high-throughput screen identified two structurally distinct TPC2 agonists. One of these evoked robust Ca2+-signals and non-selective cation currents, the other weaker Ca2+-signals and Na+-selective currents. These properties were mirrored by the Ca2+-mobilizing messenger, NAADP and the phosphoinositide, PI(3,5)P2, respectively. Agonist action was differentially inhibited by mutation of a single TPC2 residue and coupled to opposing changes in lysosomal pH and exocytosis. Our findings resolve conflicting reports on the permeability and gating properties of TPC2 and they establish a new paradigm whereby a single ion channel mediates distinct, functionally-relevant ionic signatures on demand.


Sign in / Sign up

Export Citation Format

Share Document