stream frequency
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 8)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Desmond Eteh ◽  
Edirin Akpofure ◽  
Solomon Otobo

In watershed hydrology, the morphometric features of a river basin are vital to examine the lower Orashi River basin morphological and hydrological aspects, as well as its flood potential, based on their morphometric characteristics using remotely sensed SRTM data that was analyzed with ArcGIS software. The areal, linear, and relief aspects of the Orashi River basin were examined as morphometric parameters. The lower Orashi river basin, according to the findings, has a total size of 625.61 km2 and a perimeter of 307.98 km, with a 5th order river network based on Strahler categorization and a dendritic drainage pattern. Because of low drainage density, the drainage texture is very fine, the relief is low, and the slope is very low. Bifurcation ratio, circularity ratio, drainage density aspect ratio, form factor, and stream frequency values indicate that the basin is less elongated and would produce surface runoff for a longer period, while topographic changes show that the river is decreasing with depth in the land area at about the same elevation as a result of sand deposited due to lack of maintenance by dredging, which implies that the basin is morphometrically elevated and sensitive to erosion and flooding. To understand geohydrological features and to plan and manage watersheds, morphometric analysis based on geographic information systems and remote sensing techniques is beneficial.


2021 ◽  
Vol 5 (1) ◽  
pp. 22-32
Author(s):  
David Lalramchulloa ◽  
Ch Udaya Bhaskra Rao ◽  
P. Rinawma

Channel plan-form patterns of river Tlawng has been studied which shows that there is variation in the sinuosity index. This variation is a sign of changing characteristics and behavior of the river. The average sinuosity of the river is 1.41. The sinuosity index is higher in the lower course of the river as it flows through alluvial plain. GIS techniques have been used for studying morphometric parameters. There are 6736 streams in the Tlawng river basin which shows that the topography is still undergoing erosion as the number of stream is high (Zaidi, 2011). The river has low bifurcation ratio which indicates less possibilities of flooding. The drainage density indicates the higher permeable subsoil and moderate to thick vegetative cover. The stream frequency value of the Tlawng river basin is 1.30 streams / km2 which shows a positive relation with drainage density.


Author(s):  
Ketan A.Salunke Et.al

The river basin plays a fundamental role in planning the management of natural resources. The hydrological behavior of the basin depends on the geomorphological parameters of the hydrographic basin. In the present study, a morphometric analysis was performed to determine the linear, areal and relief parameters of the Panzara River, the main tributary of the Tapi River, using the Geographic Information System tool. The river basin is of seventh order, showing a dendritic pattern of drainage that indicates the homogeneity in the texture of the basin. The drainage density in the area is 2.56 and the mean bifurcation ratio 5.065 indicates the less impact of structural deformations on the basin. The stream frequency of the basin is 3.20 showing low relief and high permeability. The present study reveals that the applications of GIS techniques are reliable, take less time and are competent to manage large databases for management of river basins.


2020 ◽  
Vol 7 ◽  
pp. 127-144
Author(s):  
Sandeep Adhikari

This study attempts to study the morphometric characteristics of the Ghatganga basin by using Geographical information system (GIS). This analysis has shown that the relation of stream order (U) and stream number (Nu) which gives a negative linear pattern that order increases with a decreasing number of stream segment of a particular order. Different morphometric parameters such as stream length (Lu), bifurcation ratio (Rb), drainage density (D), stream frequency (Fs), texture ratio (T), elongation ratio (Re), circularity ratio (Rc), form factor ratio (Rf), relief ratio (Rh) and river profile have revealed the basin has a dendritic pattern of drainage, indicating high relief and steep ground slope with less elongated young and mature landforms in which geological structures don’t have a dominant influence on the basin.


Author(s):  
Madhurjyojit Chakravartty ◽  
Nishanta Das

The present study area, occupying a major south-central part of the Jadukata river basin of the West Khasi Hills District of Meghalaya, predominantly comprises two contrasting litho-units viz., the Precambrian gneissic unit (PGU) towards the north of the study area and the Mahadek Formation constituted of sedimentary rocks (MFS) in the south. Derived areal and relief morphometric parameters have been analysed on five sub-basins two of which are in the PGU (Umlang and Umkyrtha) and the other three (Umsophew, Wah-Phodthra, and Khandow) predominantly in the MFS. The drainage density (Dd) and stream frequency (Fs) values are relatively lower for the sub-basins of PGU suggesting higher overland flow. This is substantiated by higher values of the constant of channel maintenance (C) and length of overland flow (Lg). The relief ratio (Rr) and ruggedness number (Rn) are higher for the sub-basins of MFS implying more dissection. High hypsometric integral (HI) and pseudo-hypsometric integral (PHI) suggest youthful stage and neotectonic rejuvenation with a tilt towards the west as indicated by asymmetry factor (AF) and topographic profile. Association of distinct knickpoints of longitudinal profiles with prominent lineaments indicates active fault. Preferred orientation of lower order streams in the PGU sub-basins suggests neotectonism. Deep incision by Umsophew, Wah-Phodthra, and Khandow rivers, forming V-shaped valleys through the MFS is the result of neotectonic uplift which has been further substantiated by very low valley floor-to-height ratio (Vf) at nearby locations of the confluence of these rivers with the Kynshi.


Author(s):  
Adelalu, Temitope Gabriel ◽  
Yusuf, Mohammed Bakoji ◽  
Ibrahim Abdullahi ◽  
Idakwo Victor Iko-Ojo

As climate change infiltrate and influence every sphere of the globe, the continuous study of the drainage features and assessment of the drainage basin as a fundamental geomorphic unit in water resources development and management cannot be relegated. This work has considered the analytical description of the physical division of RDCA. The three domains of the morphometric parameters (linear, areal, and relief aspects of the basin) were considered for the analysis.  Remote sensing and GIS techniques were adopted in the analysis of the data using hydrological and surface tool in ArcGIS 10.2. The acquired SRTM DEM was used to delineate the catchment area and major morphometric parameters were estimated. The results show that the basin is elongated with low leminiscate ratio. RDCA is a 7th order drainage basin, with an area of 11,355 km2, having a length of about 164 km2. Value of drainage density indicates moderate runoff potentials. Stream frequency, bifurcation ratio and constant channel maintenance indicate medium permeability and that the basin produces a flatter peak of direct runoff for a longer duration. Channel encroachment, land use and land cover change seems the cause of perennial flooding in the region than change in drainage features. This study provides scientific database for further comprehensive hydrological investigation of RDCA around which Kashimbilla dam is located.


Author(s):  
M. Dhanusree ◽  
G. Bhaskaran

Aims: The paper aims to study about the river basin morphometry namely the physical, linear and aerial parameters for the basin. Study Design: The Study has been carried out with the help of Geospatial techniques and statistical formulas. Place and Duration of Study: Bharathapuzha river basin, Kerala, India between January 2018 to July 2018. Methodology: The Study of River morphometry of Bharathapuzha River basin has been done with the help of SRTM satellite data. The downloaded data has been analyzed with the help of ARC GIS Software. The morphometric analysis has been carried out by dividing the basin into nine watersheds based on Water shed Atlas of India Prepared by Soil and Land Use board of           India. Relief, Linear and areal parameters of the basin is calculated with the help of statistical formulas. Results: Based on the analysis it is noted that there is not much difference in morphometric values except in some watersheds. Watershed number 5A2B5, 5A2B6 and 5A2B7 has highest drainage density, stream frequency, relief, relief ratio, ruggedness number, stream length ratio and lowest bifurcation ratio. These watersheds are characterized by highest surface runoff and erosion. The values of form factor, circulatory ratio and elongation ratio suggests that most of the watersheds are elongated and has high basin relief. The maximum stream order frequency is observed in case of first order streams and then for second order streams. Hence it is noted that there is decrease in stream frequency as stream order increases. Conclusion: The mean bifurcation ratio of the Bharathapuza basin is 1.52 which indicates the whole basin is less effected by structural control. This present study is valuable for the erosion control, watershed management, land and water resource planning and future prospective related to runoff study.


2018 ◽  
Vol 12 (4) ◽  
pp. 433-445 ◽  
Author(s):  
Ran Ben Basat ◽  
Roy Friedman ◽  
Rana Shahout
Keyword(s):  

2018 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
K. Srinivasa Raju ◽  
D. Nagesh Kumar ◽  
Anmol Jalali

Abstract Fuzzy VIKOR, a decision making technique, is applied to prioritize 224 sub-catchments of Mahanadi Basin, India. Seven geomorphology based criteria viz., drainage density, bifurcation ratio, stream frequency, texture ratio, form factor, elongation ratio and circulatory ratio are estimated from five digital elevation models (DEMs). Triangular membership functions were formulated for each criterion for each sub-catchment which are based on individual values obtained from individual DEM's. Entropy method is employed for estimation of weights of criteria and a similar mechanism is followed while formulating triangular membership function for weights. Eight groups are formulated with a number of sub-catchments in each group as 5, 26, 69, 65, 29, 11, 12, 7 for taking up conservation measures. Effect of varying strategy weight, (ν) on the ranking pattern is also studied and found that ν value effects ranking pattern significantly.


Sign in / Sign up

Export Citation Format

Share Document