limb morphogenesis
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 6)

H-INDEX

33
(FIVE YEARS 1)

2022 ◽  
Author(s):  
saya furukawa ◽  
sakiya yamamoto ◽  
rena kashimoto ◽  
yoshihiro morishita ◽  
Akira Satoh

Limb regeneration in Ambystoma mexicanum occurs in various sizes of fields and can recreate consistent limb morphology. It was not known what mechanism supports such stable limb morphogenesis regardless of size. Limb regeneration in urodele amphibians has been basically considered to recapitulate the limb developmental processes. Many molecules in the limb developmental processes are conserved with other tetrapods. SHH and FGF8 play important roles in the morphogenesis of limbs among them. Focusing on these two factors, we investigated the detailed expression pattern of Shh and Fgf8 in the various sizes of blastema in axolotl limb regeneration. Fgf8 is expressed in the anterior side of a blastema and Shh is expressed in the posterior side. These are maintained in a mutually dependent manner. We also clarified that the size of Shh and Fgf8 expression domains were scaled as the size of the blastemas increased. However, it was found that the secretion and working range of SHH were kept constant. We also found that the consistent SHH secretion range contributed to promoting cell proliferation and the first digital cartilage differentiation near the Shh expression domain. This would be a reasonable system to guarantees constant limb morphogenesis regardless of the blastema size. We also showed that the Shh-Fgf8 expression domain was shifted posteriorly as the digital differentiation progressed. Consistently, slowing the timing of blocking Shh signaling resulted in morphological defects that could be observed in only posterior digits. The revealed posteriorly shifting Shh-Fgf8 domain might explain urodele specific digit formation, in which digits are added posteriorly.


2021 ◽  
Author(s):  
Giovanni Dalmasso ◽  
Marco Musy ◽  
Martina Niksic ◽  
Alexandre Robert-Moreno ◽  
Claudio Badia-Careaga ◽  
...  

Although the full embryonic development of species such as Drosophila and zebrafish can be 3D imaged in real time, this is not true for mammalian organs, as normal organogenesis cannot be recapitulated in vitro. Currently available 3D data is therefore ex vivo images which provide only a snap shot of development at discrete moments in time. Here we propose a computer based approach to recreate the continuous evolution in time and space of developmental stages from 3D volumetric images. Our method uses the mathematical approach of spherical harmonics to re-map discrete shape data into a space in which facilitates a smooth interpolation over time. We tested our approach on mouse limb buds (from E10 to E12.5) and embryonic hearts (from 10 to 29 somites). A key advantage of the method is that the resulting 4D trajectory takes advantage of all the available data (i.e. it is not dominated by the choice of a few "ideal" images), while also being able to interpolate well through time intervals for which there is little or no data. This method not only provides a quantitative basis for validating predictive models, but it also increases our understanding of morphogenetic processes. We believe this is the first data-driven quantitative 4D description of limb morphogenesis.


2021 ◽  
Author(s):  
Harsha Mahabaleshwar ◽  
P.V. Asharani ◽  
Tricia Loo Yi Jun ◽  
Shze Yung Koh ◽  
Melissa R. Pitman ◽  
...  

SUMMARYImmigration of mesenchymal cells into the growing fin and limb buds drives distal outgrowth, with subsequent tensile forces between these cells essential for fin and limb morphogenesis. Morphogens derived from the apical domain of the fin, orientate limb mesenchyme cell polarity, migration, division and adhesion. The zebrafish mutant stomp displays defects in fin morphogenesis including blister formation and associated loss of orientation and adhesion of immigrating fin mesenchyme cells. Positional cloning of stomp identified a mutation in the gene encoding the axon guidance ligand, Slit3. We provide evidence that Slit ligands derived from immigrating mesenchyme act via Robo receptors at the Apical Ectodermal Ridge (AER) to promote release of sphingosine-1-phosphate (S1P). S1P subsequently diffuses back to the mesenchyme to promote their polarisation, orientation, positioning and adhesion to the interstitial matrix of the fin fold. We thus demonstrate coordination of the Slit-Robo and S1P signalling pathways in fin fold morphogenesis. Our work introduces a mechanism regulating the orientation, positioning and adhesion of its constituent cells.


Author(s):  
Julie D. White ◽  
Karlijne Indencleef ◽  
Sahin Naqvi ◽  
Ryan J. Eller ◽  
Jasmien Roosenboom ◽  
...  

AbstractThe human face is complex and multipartite, and characterization of its genetic architecture remains intriguingly challenging. Applying GWAS to multivariate shape phenotypes, we identified 203 genomic regions associated with normal-range facial variation, 117 of which are novel. The associated regions are enriched for both genes relevant to craniofacial and limb morphogenesis and enhancer activity in cranial neural crest cells and craniofacial tissues. Genetic variants grouped by their contribution to similar aspects of facial variation show high within-group correlation of enhancer activity, and four SNP pairs display evidence of epistasis, indicating potentially coordinated actions of variants within the same cell types or tissues. In sum, our analyses provide new insights for understanding how complex morphological traits are shaped by both individual and coordinated genetic actions.


2019 ◽  
Author(s):  
Nathaniel P Disser ◽  
Gregory C Ghahramani ◽  
Jacob B Swanson ◽  
Susumu Wada ◽  
Max L Chao ◽  
...  

AbstractTendon is a functionally important connective tissue that transmits force between skeletal muscle and bone. Previous studies have evaluated the architectural designs and mechanical properties of different tendons throughout the body. However, less is known about the underlying transcriptional differences between tendons which may dictate their designs and properties. Therefore, our objective was to develop a comprehensive atlas of the transcriptome of limb tendons in adult mice and rats using systems biology techniques. We selected the Achilles, forepaw digit flexor, patellar, and supraspinatus tendons due to their divergent functions and high rates of injury and tendinopathies in patients. Using RNA sequencing data, we generated the Comparative Tendon Transcriptional Database (CTTDb) that identified substantial diversity in the transcriptomes of tendons both within and across species. Approximately 30% of transcripts were differentially regulated between tendons of a given species, and nearly 60% of the transcripts present in anatomically similar tendons were different between species. Many of the genes that differed between tendons and across species are important in tissue specification and limb morphogenesis, tendon cell biology and tenogenesis, growth factor signaling, and production and maintenance of the extracellular matrix. This study indicates that tendon is a surprisingly heterogenous tissue with substantial genetic variation based on anatomical location and species.Key PointsTendon is a hypocellular, matrix-rich tissue that has been excluded from comparative transcriptional atlases. These atlases have provided important knowledge about biological heterogeneity between tissues, and our manuscript addresses this important gap.We performed measures on four of the most studied tendons, the Achilles, forepaw flexor, patellar, and supraspinatus tendons of both mice and rats. These tendons are functionally distinct and are also among the most commonly injured, and therefore of important translational interest.Approximately one-third of the transcriptome was differentially regulated between Achilles, forepaw flexor, patellar, and supraspinatus tendons within either mice or rats. Nearly two thirds of the transcripts that are expressed in anatomically similar tendons were different between mice and rats.The overall findings from this study identified that although tendons across the body share a common anatomical definition based on their physical location between skeletal muscle and bone, tendon is a surprisingly genetically heterogeneous tissue.


2019 ◽  
Author(s):  
Feini Qu ◽  
Ilan C. Palte ◽  
Paul M. Gontarz ◽  
Bo Zhang ◽  
Farshid Guilak

AbstractHumans have limited regenerative potential of musculoskeletal tissues following limb or digit loss. The murine digit has been used to study mammalian regeneration, where stem/progenitor cells (the ‘blastema’) regrow the digit tip after distal, but not proximal, amputation. However, the molecular mechanisms responsible for this response remain to be determined. We hypothesized that regeneration is initiated and maintained by a gene regulatory network that recapitulates aspects of limb development, whereas a non-regenerative response exhibits fibrotic wound healing and minimal bone remodeling. To test these hypotheses, we evaluated the spatiotemporal formation of bone and fibrous tissues after level-dependent amputation of the murine terminal phalanx and quantified the transcriptome of the repair tissue. We show that digit regeneration is a level-dependent and spatiotemporally controlled process, with distal and proximal amputations showing significant differences in gene expression and tissue regrowth over time. Regeneration is characterized by the transient upregulation of genes that direct skeletal system development and limb morphogenesis, including distal Hox genes. By identifying the molecular pathways regulating regeneration, this work will lead to novel therapies that restore complex tissues after injury.Summary StatementMurine digit tip regeneration after distal amputation is orchestrated through a transient, limb-specific gene network by blastema cells. Proximal amputation activates an alternate transcriptional program that results in scar formation.


2018 ◽  
Vol 50 (10) ◽  
pp. 1463-1473 ◽  
Author(s):  
Bjørt K. Kragesteen ◽  
Malte Spielmann ◽  
Christina Paliou ◽  
Verena Heinrich ◽  
Robert Schöpflin ◽  
...  

2017 ◽  
Vol 145 ◽  
pp. S40
Author(s):  
Yoshihiro Morishita ◽  
Takayuki Suzuki ◽  
Hitoshi Yokoyama ◽  
Yasuhiro Kamei ◽  
Koji Tamura ◽  
...  

Development ◽  
2017 ◽  
Vol 144 (13) ◽  
pp. 2480-2489 ◽  
Author(s):  
Beth A. Firulli ◽  
Hannah Milliar ◽  
Kevin P. Toolan ◽  
Jade Harkin ◽  
Robyn K. Fuchs ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document