compressional waves
Recently Published Documents


TOTAL DOCUMENTS

278
(FIVE YEARS 24)

H-INDEX

39
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Mohammad Hassan Alqam ◽  
Adnan Hussain Al-Makrami ◽  
Hazim Hussain Abass

Abstract The objectives of this investigation were to perform a rock mechanical study to evaluate long term stability of Resin-Coated Proppant (RCP), combined with various additives currently being used in screenless propped hydraulic fracturing completions in the sandstone formations. Thereby providing a tool for the industry to know exactly the duration of the shut-in time before putting a well back onto production. A new experimental method was developed to monitor the curing process of RCP as temperature increases. The velocity of both shear and compressional waves were being monitored as a function of temperature, while the tested RCP sample was being housed in a pressurized vessel. The pressurized vessel was subjected to a variable temperature profile to mimic the recovery of the reservoir temperature following a propped hydraulic fracturing treatment. The placed proppant should attain an optimum consolidation to minimize the potential for proppant flow back. The study has been performed on various types of RCP samples under a range of reservoir conditions. The role of closure stress, temperature, curing time and carrier fluids in attaining a maximum strength of RCP following a propped hydraulic fracturing treatment have been investigated. Also, the Unconfined Compressive Strength (UCS) of various types of RCP have been measured. The testing methods currently practiced in the industry to qualify proppant for field applications are based on physical characterization of several parameters such as the specific gravity of proppant, absolute volume, solubility, roundness, sphericity and bulk density. The sieve analysis, compressive strength, and API crush testing are also measured and reported. The API Recommended Practices; API RP56, API RP58 and API RP60 are the main procedures used to test the suitability of proppants for hydraulic fracturing treatment. However, there is no published API testing method for RCP; therefore this study introduces a new testing procedure, using acoustic velocity as a function of temperature and compressive strength as a function of time; to qualify a given RCP for a particular reservoir of known stress and temperature. The final outcome of this study is to establish a functional procedure for such measurements, in order to maximize the success of a propped hydraulic fracturing treatment and minimize the occurrence of flow back incidents.


Author(s):  
S. B. Gorshkalev ◽  
V. V. Karsten ◽  
P. A. Dergach

At the Bystrovka vibroseismic test site (Novosibirsk region) 3-component refracted waves profiling was performed at three intersecting lines. Shear waves analysis made possible to detect anisotropy of the Paleozoic basement occurring at depth of about 10 m and to suggest symmetry elements of this medium along with their orientation. Compressional waves data were used to construct depth sections estimating head waves velocities. These velocities demonstrate significant variation in lines of different orientation. The results obtained agree with previously performed VSP.


Geophysics ◽  
2021 ◽  
pp. 1-39
Author(s):  
Gu Xihao ◽  
Xiao-Ming Tang ◽  
Yuan-Da Su

A potential application for single-well acoustic imaging is the detection of an existing cased borehole in the vicinity of the well being drilled, which is important for drilling toward (when drilling a relief well), or away from (collision prevention), the existing borehole. To fulfill this application in the unconsolidated formation of shallow sediments, we propose a detection method using the low-frequency compressional waves from dipole acoustic logging. For this application, we perform theoretical analyses on elastic wave scattering from the cased borehole and derive the analytical expressions for the scattered wavefield for the incidence of compressional and shear waves from a borehole dipole source. The analytical solution, in conjunction with the elastic reciprocity theorem, provides a fast algorithm for modeling the whole process of wave radiation, scattering, and reception for the borehole acoustic detection problem. The analytical results agree well with those from 3D finite-difference simulations. The results show that compressional waves, instead of shear waves as commonly used for dipole acoustic imaging, are particularly advantageous for the borehole detection in the unconsolidated formation. Field data examples are used to demonstrate the application in a shallow marine environment, where dipole-compressional wave data in the measurement well successfully delineate a nearby cased borehole, validating our analysis results and application.


2021 ◽  
Vol 40 (5) ◽  
pp. 342-347
Author(s):  
René-Édouard Plessix ◽  
Tadas Krupovnickas

Classic imaging approaches consist of splitting the earth into background and reflectivity models. When justified, this separation of scale is quite powerful, although this approach relies on some smoothness and weak contrast assumptions. This approach allows for the imaging methods to be based on acoustic wave propagation after having identified the compressional waves through picking or signal processing. Over the past years, wave-equation tomography and waveform inversion approaches have become routine, complementing the classic approaches to derive background models. They do not rely on high-frequency picks, unlike ray-based traveltime tomography, but on low-frequency cross-correlation to define time shifts and on waveform matching. In the presence of large earth parameter contrasts, time shifts and waveforms of compressional waves may depend on elastic parameters when interferences occur within the Fresnel zones. This challenges the recovery of the background model under an acoustic assumption with low-frequency data. Accounting for an elastic propagation in waveform inversion, even in the context of model building, could help to reduce the artifacts seen in acoustic results. A synthetic and a real data example are presented to illustrate the potential benefit of using an elastic waveform inversion approach when inverting long-offset, low-frequency seismic data.


2021 ◽  
Vol 11 (1) ◽  
pp. 95
Author(s):  
Sudarmaji Saroji ◽  
Budi Eka Nurcahya ◽  
Nivan Ramadhan Sugiantoro

<p>Numerical modeling of 2D seismic wave propagation using spectral finite element method to estimate the response of seismic waves passing through the poroelastic medium from a hydrocarbon reservoir has been carried out. A hybrid simple model of the elastic - poroelastic - elastic with a mesoscopic scale element size of about 50cm was created. Seismic waves which was in the form of the ricker function are generated on the first elastic medium, propagated into the poroelastic medium and then transmitted to the second elastic medium. Pororoelastic medium is bearing hydrocarbon fluid in the form of gas, oil or water. Vertical and horizontal component of velocity seismograms are recorded on all mediums. Seismograms which are recorded in the poroelastic and second elastic medium show the existence of slow P compressional waves following fast P compressional waves that do not appear on the seismogram of the first elastic medium. The slow P wave is generated when the fast P wave enters the interface of the elastic - poroelastic boundary, propagated in the poroelastic medium and is transmited to the second elastic medium. The curves of Vertical to horizontal spectrum ratio (VHSR) which are observed from seismograms recorded in the poroelastic and the second elastic medium show that the peak of VHSR values at low frequency correlated with the fluid of poroelastic reservoir. The highest VHSR value at the low frequency which is recorded on the seismogram is above the 2.5 Hz frequency for reservoirs containing gas and oil in the second elastic medium, while for the medium containing water is the highest VHSR value is below the 2.5 Hz frequency.</p>


2021 ◽  
Author(s):  
Benoit Tauzin ◽  
Lauren Waszek ◽  
Jun Yan ◽  
Maxim Ballmer ◽  
Nick Schmerr ◽  
...  

&lt;p&gt;Convective stirring of chemical heterogeneities introduced through oceanic plate subduction results in the marble cake model of mantle composition. A convenient description invokes a chemically unequilibrated mixture of oceanic basaltic crust and harzburgitic lithosphere. Such a composition is required to explain joint observations of shear and compressional waves reflected underneath transition zone (TZ) discontinuities&lt;sup&gt;1&lt;/sup&gt;. The formation of basaltic reservoirs at TZ depth results from complex interaction between phase-change induced chemical segregation, subducted slab downward entrainment, and plume upward advection. However, the dominant mechanism to create and maintain the reservoirs is debated, because both present-day reservoir location and the amount of basalt in these reservoirs are unconstrained. Here, Bayesian inversion of SS- and PP-precursors reflection data indicates that the TZ comprises a global average basalt fraction f = 0.32 &amp;#177; 0.11. We find the most enriched basaltic reservoirs (f = 0.5-0.6) are associated with recent subduction in the circum-Pacific region. We investigate the efficiency of plate subduction to maintain such reservoirs using global-scale thermochemical&amp;#160; convection models&lt;sup&gt;2&lt;/sup&gt;.&lt;/p&gt;&lt;p&gt;[1] Waszek, L., Tauzin, B., Schmerr, N.C., Ballmer, M., &amp; Afonso, J.C. (in review). A poorly mixed mantle and its thermal state inferred from seismic waves.&lt;/p&gt;&lt;p&gt;[2] Yan, J., Ballmer, M. D., &amp; Tackley, P. J. (2020). The evolution and distribution of recycled oceanic crust in the Earth's mantle: Insight from geodynamic models. &lt;em&gt;Earth and Planetary Science Letters&lt;/em&gt;, &lt;em&gt;537&lt;/em&gt;, 116171.&lt;/p&gt;


2021 ◽  
Author(s):  
Xiao Ma ◽  
Anmin Tian ◽  
Quanqi Shi ◽  
Shichen Bai ◽  
Ji Liu ◽  
...  

&lt;p&gt;In the two flanks of the Earth&amp;#8217;s magnetosphere, the compressional Pc5 waves are often observed. Previous study suggests that these waves are usually excited by plasma pressure anisotropy such as drift mirror instability. Interestingly, whistler mode waves are often observed in the magnetic trough regions of the compressional Pc5 waves. In this study, we use 10 years (2007-2016) THEMIS A data to study the electron distributions in the compressional Pc5 waves associated with the whistler mode waves. We find three typical electron pitch angle distributions (PADs) in these compressional waves: cigar-shape, donut-shape and pancake-shape. They predominantly occur at tens to hundreds eV, several keV and &gt;10 keV, respectively. The interaction effects between the electrons and whistler waves inside the magnetic troughs are stressed in understanding the formation of these PADs.&lt;/p&gt;


2021 ◽  
Author(s):  
Anmin Tian

&lt;p&gt;Pc5 compressional waves are frequently observed in the outer magnetosphere with mirror mode features. Due to the limited spatial coverage of spacecraft, their overall structure is still poorly understood. In this work, the wave structure and motion characteristics are statistically investigated based on the MMS data from September to October 2015. During this time period, the apogees of the MMS spacecraft were located in the outer dusk magnetosphere, and the spacecraft has regular tetrahedral configuration that facilitates the application of multi-spacecraft analysis techniques. The magnetic trough boundaries are identified, and their normal direction, current density and velocity of these boundaries are calculated. We found that the magnetic trough has a magnetic bottle topology along the field line. In the r-a plane, the two boundaries has an open angle toward the radial direction.The boundaries mainly move sunward in the GSE XY plane with average speed of ~26km/s. The poloidal Alfven mode is found to be coupling with the compressional mode oscillation. It suggests that our observations could be explained by the theory of drift Alfven ballooning mirror instability.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document