electron intensity
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Solène Lejosne ◽  
Mariangel Fedrizzi ◽  
Naomi Maruyama ◽  
Richard S. Selesnick

Recent analysis of energetic electron measurements from the Magnetic Electron Ion Spectrometer instruments onboard the Van Allen Probes showed a local time variation of the equatorial electron intensity in the Earth’s inner radiation belt. The local time asymmetry was interpreted as evidence of drift shell distortion by a large-scale electric field. It was also demonstrated that the inclusion of a simple dawn-to-dusk electric field model improved the agreement between observations and theoretical expectations. Yet, exactly what drives this electric field was left unexplained. We combine in-situ field and particle observations, together with a physics-based coupled model, the Rice Convection Model (RCM) Coupled Thermosphere-Ionosphere-Plasmasphere-electrodynamics (CTIPe), to revisit the local time asymmetry of the equatorial electron intensity observed in the innermost radiation belt. The study is based on the dawn-dusk difference in equatorial electron intensity measured at L = 1.30 during the first 60 days of the year 2014. Analysis of measured equatorial electron intensity in the 150–400 keV energy range, in-situ DC electric field measurements and wind dynamo modeling outputs provide consistent estimates of the order of 6–8 kV for the average dawn-to-dusk electric potential variation. This suggests that the dynamo electric fields produced by tidal motion of upper atmospheric winds flowing across Earth’s magnetic field lines - the quiet time ionospheric wind dynamo - are the main drivers of the drift shell distortion in the Earth’s inner radiation belt.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tsuyoshi Suwada ◽  
Muhammad Abdul Rehman ◽  
Fusashi Miyahara

AbstractThe direct simultaneous detection of electron and positron bunch signals was successfully performed for the first time with wideband pickups and a detection system at the positron capture section of the SuperKEKB factory. The time interval between the electron and positron bunches, their bunch lengths, and bunch intensities depending on the phase of accelerating structures were measured to investigate their capture process and to maximally optimize the positron intensity. The results show that the time intervals were measured in the range of 135–265 ps, and the line-order switch of the electron and positron bunches in the axial direction was clearly observed as a function of the phase. The positron (electron) intensity was maximized at the optimal phase (180$$^{\circ }$$ ∘ shifted from the optimum). These series of measurements have never been experimentally conducted so far. It is demonstrated that the positron intensity can be systematically optimized with this system as functions of beam parameters in multidimensional spaces for any positron capture section.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1696
Author(s):  
Hana Kriaa ◽  
Antoine Guitton ◽  
Nabila Maloufi

In a scanning electron microscope, the backscattered electron intensity modulations are at the origin of the contrast of like-Kikuchi bands and crystalline defects. The Electron Channeling Contrast Imaging (ECCI) technique is suited for defects characterization at a mesoscale with transmission electron microscopy-like resolution. In order to achieve a better comprehension of ECCI contrasts of twin-boundary and stacking fault, an original theoretical approach based on the dynamical diffraction theory is used. The calculated backscattered electron intensity is explicitly expressed as function of physical and practical parameters controlling the ECCI experiment. Our model allows, first, the study of the specimen thickness effect on the channeling contrast on a perfect crystal, and thus its effect on the formation of like-Kikuchi bands. Then, our theoretical approach is extended to an imperfect crystal containing a planar defect such as twin-boundary and stacking fault, clarifying the intensity oscillations observed in ECC micrographs.


2021 ◽  
Author(s):  
Tsuyoshi Suwada ◽  
Muhammad Abdul Rehman ◽  
Fusashi Miyahara

Abstract The direct simultaneous detection of electron and positron bunch signals was successfully performed for the first time with wideband pickups and a detection system at the positron capture section of the SuperKEKB factory. The time interval between the electron and positron bunches, their bunch lengths, and bunch intensities depending on the phase of accelerating structures were measured to investigate their capture process and to maximally optimize the positron intensity. The results show that the time intervals were measured in the range of 135–265 ps, and the line-order switch of the electron and positron bunches in the axial direction was clearly observed as a function of the phase. The positron (electron) intensity was maximized at the optimal phase (180 deg shifted from the optimum). These series of measurements have never been experimentally conducted so far. It is demonstrated that the positron intensity can be systematically optimized with this system as functions of beam parameters in multidimensional spaces for any positron capture section.


2020 ◽  
Vol 117 (45) ◽  
pp. 27805-27810
Author(s):  
Matus Krajnak ◽  
Joanne Etheridge

We introduce an image-contrast mechanism for scanning transmission electron microscopy (STEM) that derives from the local symmetry within the specimen. For a given position of the electron probe on the specimen, the image intensity is determined by the degree of similarity between the exit electron-intensity distribution and a chosen symmetry operation applied to that distribution. The contrast mechanism detects both light and heavy atomic columns and is robust with respect to specimen thickness, electron-probe energy, and defocus. Atomic columns appear as sharp peaks that can be significantly narrower than for STEM images using conventional disk and annular detectors. This fundamentally different contrast mechanism complements conventional imaging modes and can be acquired simultaneously with them, expanding the power of STEM for materials characterization.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Guochen Qi ◽  
Di Tian ◽  
Guolun Gao ◽  
Guangda Liu ◽  
Chunling Qiu ◽  
...  

An electron impact ion source-adopted magnetic field-enhanced technology has been designed for enhancing the electron intensity and the ionization efficiency. Based on the ion optic focus mechanism, an electron impact ionization source was designed, and the electron entrance into the ionization chamber was designed with a hollow cylinder structure to improve the ion extraction efficiency. Numerical simulation and optimal geometry were optimized by SIMION 8.0 to provide higher electron intensity and ion transmission efficiency. To improve the electron intensity, the influence of the filament potential and magnetic intensity was investigated, and the values of 70 eV and 150 Gs were chosen in our apparatus. Based on the optimal parameters, the air in the lab and oxygen gas was detected by the homemade apparatus, and the ion intensity was detected in the positive and negative ion modes, respectively. The homemade electron impact ion source apparatus has the potential to enhance ionization efficiency applied in the mass spectrometer ionization source.


Space Weather ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 553-566 ◽  
Author(s):  
A. G. Smirnov ◽  
E. A. Kronberg ◽  
F. Latallerie ◽  
P. W. Daly ◽  
N. Aseev ◽  
...  

2017 ◽  
Vol 18 (6) ◽  
pp. 10-19 ◽  
Author(s):  
Kenneth R. Hogstrom ◽  
Robert L. Carver ◽  
Erin L. Chambers ◽  
Kevin Erhart

2015 ◽  
Vol 120 (2) ◽  
pp. 1215-1228 ◽  
Author(s):  
X. Li ◽  
R. S. Selesnick ◽  
D. N. Baker ◽  
A. N. Jaynes ◽  
S. G. Kanekal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document