motor neuron pool
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 47 (3) ◽  
pp. 282-288
Author(s):  
I. N. Nosikova ◽  
A. M. Ryabova ◽  
L. E. Dmitrieva ◽  
A. Z. Zakirova ◽  
V. V. Kitov ◽  
...  

Abstract The aim of this study was to analyze the mechanisms of the development of hypogravitational hyperreflexia in the motoneuron pool of gravity-dependent muscles such as the gastrocnemius and soleus muscles of the leg under the conditions of five-day “dry” immersion in healthy volunteers using the method of transcranial and trans-spinal magnetic stimulation. The essence of the method lies in the stimulation of the areas of interest (motor areas of the cerebral cortex and lumbosacral thickening) with an electromagnetic stimulus. The study involved 10 subjects at the age of 29.9 ± 6.9 years, with no history of movement disorders or neurological diseases. The excitability of the motor neuron pool in both muscles was judged by the values of the thresholds and amplitudes of the motor response caused by transcranial and trans-spinal magnetic stimulations. A general pattern manifested in a significant decrease in thresholds and an increase in the amplitudes of motor responses caused by trans-spinal magnetic stimulation in both muscles gas been discovered. Specifically, the threshold of spinal evoked motor responses in both muscles decreased by 20%, and the amplitude increased by 150% after the end of immersion. The data obtained during the experiment confirm the spinal nature of the origin of hypogravitational hyperreflexia.


Author(s):  
Leonardo Gizzi ◽  
Utku Ş. Yavuz ◽  
Dominic Hillerkuss ◽  
Tommaso Geri ◽  
Elena Gneiting ◽  
...  

Recent studies suggest that transitory blood flow restriction (BFR) may improve the outcomes of training from anatomical (hypertrophy) and neural control perspectives. Whilst the chronic consequences of BFR on local metabolism and tissue adaptation have been extensively investigated, its acute effects on motor control are not yet fully understood. In this study, we compared the neuromechanical effects of continuous BFR against non-restricted circulation (atmospheric pressure—AP), during isometric elbow flexions. BFR was achieved applying external pressure either between systolic and diastolic (lower pressure—LP) or 1.3 times the systolic pressure (higher pressure—HP). Three levels of torque (15, 30, and 50% of the maximal voluntary contraction—MVC) were combined with the three levels of pressure for a total of 9 (randomized) test cases. Each condition was repeated 3 times. The protocol was administered to 12 healthy young adults. Neuromechanical measurements (torque and high-density electromyography—HDEMG) and reported discomfort were used to investigate the response of the central nervous system to BFR. The investigated variables were: root mean square (RMS), and area under the curve in the frequency domain—for the torque, and average RMS, median frequency and average muscle fibres conduction velocity—for the EMG. The discomfort caused by BFR was exacerbated by the level of torque and accumulated over time. The torque RMS value did not change across conditions and repetitions. Its spectral content, however, revealed a decrease in power at the tremor band (alpha-band, 5–15 Hz) which was enhanced by the level of pressure and the repetition number. The EMG amplitude showed no differences whilst the median frequency and the conduction velocity decreased over time and across trials, but only for the highest levels of torque and pressure. Taken together, our results show strong yet transitory effects of BFR that are compatible with a motor neuron pool inhibition caused by increased activity of type III and IV afferences, and a decreased activity of spindle afferents. We speculate that a compensation of the central drive may be necessary to maintain the mechanical output unchanged, despite disturbances in the afferent volley to the motor neuron pool.


2020 ◽  
Vol 14 ◽  
Author(s):  
Alejandro J. Lopez ◽  
Jiang Xu ◽  
Maruf M. Hoque ◽  
Carly McMullen ◽  
Trisha M. Kesar ◽  
...  

The output from motor neuron pools is influenced by the integration of synaptic inputs originating from descending corticomotor and spinal reflex pathways. In this study, using paired non-invasive brain and peripheral nerve stimulation, we investigated how descending corticomotor pathways influence the physiologic recruitment order of the soleus Hoffmann (H-) reflex. Eleven neurologically unimpaired adults (9 females; mean age 25 ± 3 years) completed an assessment of transcranial magnetic stimulation (TMS)-conditioning of the soleus H-reflex over a range of peripheral nerve stimulation (PNS) intensities. Unconditioned H-reflex recruitment curves were obtained by delivering PNS pulses to the posterior tibial nerve. Subsequently, TMS-conditioned H-reflex recruitment curves were obtained by pairing PNS with subthreshold TMS at short (−1.5 ms) and long (+10 ms) intervals. We evaluated unconditioned and TMS-conditioned H-reflex amplitudes along the ascending limb, peak, and descending limb of the H-reflex recruitment curve. Our results revealed that, for long-interval facilitation, TMS-conditioned H-reflex amplitudes were significantly larger than unconditioned H-reflex amplitudes along the ascending limb and peak of the H-reflex recruitment curve. Additionally, significantly lower PNS intensities were needed to elicit peak H-reflex amplitude (Hmax) for long-interval facilitation compared to unconditioned. These findings suggest that the influence of descending corticomotor pathways, particularly those mediating long-interval facilitation, contribute to changing the recruitment gain of the motor neuron pool, and can inform future methodological protocols for TMS-conditioning of H-reflexes. By characterizing and inducing short-term plasticity in circuitry mediating short- and long-interval TMS-conditioning of H-reflex amplitudes, future studies can investigate supraspinal and spinal circuit contributions to abnormal motor control, as well as develop novel therapeutic targets for neuromodulation.


2020 ◽  
Vol 123 (6) ◽  
pp. 2209-2216 ◽  
Author(s):  
Jennifer M. Jakobi ◽  
Samantha L. Kuzyk ◽  
Chris J. McNeil ◽  
Brian H. Dalton ◽  
Geoffrey A. Power

Our findings indicate that lower electromyographic activity during the torque-enhanced condition following active lengthening compared with a purely isometric contraction arises from fewer active motor units and a lower discharge rate of those that are active. We used an acute condition of increased torque capacity to induce a decrease in net output of the motor neuron pool during a submaximal task to demonstrate, in humans, the impact of motor unit activity on torque steadiness.


2020 ◽  
Vol 131 (4) ◽  
pp. e158
Author(s):  
J. Ibáñez ◽  
D. Spampinato ◽  
A. Del Vecchio ◽  
C.A. Vollette ◽  
A. Casolo ◽  
...  

Author(s):  
Mamede de Carvalho ◽  
Michael Swash

Electromyography is critical for the diagnosis of motor neuron disease, as its findings exclude mimicking disorders, and confirm signs of widespread motor unit loss and reinnervation. In chronic conditions the slow disease course allows giant, stable motor unit potentials to appear. In contrast, in amyotrophic lateral sclerosis, the rapid degenerative process is characterized by signs of denervation and unstable motor unit potentials, where motor units become dysfunctional before having time to sustain very large reinnervated motor unit potentials. Fasciculation potentials are observed in both conditions. In amyotrophic lateral sclerosis fasciculation potentials are important supporting electrodiagnostic evidence, permitting earlier diagnosis. Many methods have been developed to quantify and monitor the lower motor neuron pool, but few have been used in clinical trials. Their role as tools to follow interventions or to interpret pathogenesis remains incompletely explored. Electromyography is a sensitive and reliable test in the diagnosis and assessment of motor neuron diseases.


2016 ◽  
Vol 25 (3) ◽  
pp. 294-300 ◽  
Author(s):  
Conrad M. Gabler ◽  
Adam S. Lepley ◽  
Tim L. Uhl ◽  
Carl G. Mattacola

Clinical Scenario:Proper neuromuscular activation of the quadriceps muscle is essential for maintaining quadriceps (quad) strength and lower-extremity function. Quad activation (QA) failure is a common characteristic observed in patients with knee pathologies, defined as an inability to voluntarily activate the entire alpha-motor-neuron pool innervating the quad. One of the more popular techniques used to assess QA is the superimposed burst (SIB) technique, a force-based technique that uses a supramaximal, percutaneous electrical stimulation to activate all of the motor units in the quad during a maximal, voluntary isometric contraction. Central activation ratio (CAR) is the formula used to calculate QA level (CAR = voluntary force/SIB force) with the SIB technique. People who can voluntarily activate 95% or more (CAR = 0.95–1.0) of their motor units are defined as being fully activated. Therapeutic exercises aimed at improving quad strength in patients with knee pathologies are limited in their effectiveness due to a failure to fully activate the muscle. Within the past decade, several disinhibitory interventions have been introduced to treat QA failure in patients with knee pathologies. Transcutaneous electrical nerve stimulation (TENS) and cryotherapy are sensory-targeted modalities traditionally used to treat pain, but they have been shown to be 2 of the most successful treatments for increasing QA levels in patients with QA failure. Both modalities are hypothesized to positively affect voluntary QA by disinhibiting the motor-neuron pool of the quad. In essence, these modalities provide excitatory afferent stimuli to the spinal cord, which thereby overrides the inhibitory afferent signaling that arises from the involved joint. However, it remains unknown whether 1 is more effective than the other for restoring QA levels in patients with knee pathologies. By knowing the capabilities of each disinhibitory modality, clinicians can tailor treatments based on the rehabilitation goals of their patients.Focused Clinical Question:Is TENS or cryotherapy the more effective disinhibitory modality for treating QA failure (quantified via CAR) in patients with knee pathologies?


Sign in / Sign up

Export Citation Format

Share Document