synaptic junctions
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 12)

H-INDEX

36
(FIVE YEARS 1)

Author(s):  
Hadi Rahmaninejad ◽  
Tom Pace ◽  
Byeong Jae Chun ◽  
Peter Kekenes-Huskey
Keyword(s):  

Cell Reports ◽  
2021 ◽  
Vol 37 (1) ◽  
pp. 109797
Author(s):  
Maximilian Borgmeyer ◽  
Cristina Coman ◽  
Canan Has ◽  
Hans-Frieder Schött ◽  
Tingting Li ◽  
...  

Author(s):  
Maria Andres-Alonso ◽  
Michael R. Kreutz ◽  
Anna Karpova

AbstractThe complex morphology of neurons, the specific requirements of synaptic neurotransmission and the accompanying metabolic demands create a unique challenge for proteostasis. The main machineries for neuronal protein synthesis and degradation are localized in the soma, while synaptic junctions are found at vast distances from the cell body. Sophisticated mechanisms must, therefore, ensure efficient delivery of newly synthesized proteins and removal of faulty proteins. These requirements are exacerbated at presynaptic sites, where the demands for protein turnover are especially high due to synaptic vesicle release and recycling that induces protein damage in an intricate molecular machinery, and where replacement of material is hampered by the extreme length of the axon. In this review, we will discuss the contribution of the two major pathways in place, autophagy and the endolysosomal system, to presynaptic protein turnover and presynaptic function. Although clearly different in their biogenesis, both pathways are characterized by cargo collection and transport into distinct membrane-bound organelles that eventually fuse with lysosomes for cargo degradation. We summarize the available evidence with regard to their degradative function, their regulation by presynaptic machinery and the cargo for each pathway. Finally, we will discuss the interplay of both pathways in neurons and very recent findings that suggest non-canonical functions of degradative organelles in synaptic signalling and plasticity.


2020 ◽  
Vol 169 ◽  
pp. 112618
Author(s):  
Sujasha Gupta ◽  
Subhadip Ghatak ◽  
Travis Hery ◽  
Savita Khanna ◽  
Mohamed El Masry ◽  
...  

2020 ◽  
Vol 375 (1809) ◽  
pp. 20190553 ◽  
Author(s):  
Tara M. Finegan ◽  
Dan T. Bergstralh

In this review, we address the function of immunoglobulin superfamily cell adhesion molecules (IgCAMs) in epithelia. Work in the Drosophila model system in particular has revealed novel roles for calcium-independent adhesion molecules in the morphogenesis of epithelial tissues. We review the molecular composition of lateral junctions with a focus on their IgCAM components and reconsider the functional roles of epithelial lateral junctions. The epithelial IgCAMs discussed in this review have well-defined roles in the nervous system, particularly in the process of axon guidance, suggesting functional overlap and conservation in mechanism between that process and epithelial remodelling. We expand on the hypothesis that epithelial occluding junctions and synaptic junctions are compositionally equivalent and present a novel hypothesis that the mechanism of epithelial cell (re)integration and synaptic junction formation are shared. We highlight the importance of considering non-cadherin-based adhesion in our understanding of the mechanics of epithelial tissues and raise questions to direct future work. This article is part of the discussion meeting issue ‘Contemporary morphogenesis’.


Genetics ◽  
2020 ◽  
Vol 216 (1) ◽  
pp. 159-175
Author(s):  
Tho Huu Nguyen ◽  
Tae Hee Han ◽  
Stuart J. Newfeld ◽  
Mihaela Serpe

Bone morphogenetic proteins (BMPs) shape normal development and function via canonical and noncanonical signaling pathways. BMPs initiate canonical signaling by binding to transmembrane receptors that phosphorylate Smad proteins and induce their translocation into the nucleus and regulation of target genes. Phosphorylated Smads also accumulate at cellular junctions, but this noncanonical, local BMP signaling modality remains less defined. We have recently reported that phosphorylated Smad (pMad in Drosophila) accumulates at synaptic junctions in protein complexes with genetically distinct composition and regulation. Here, we examined a wide collection of Drosophila Mad alleles and searched for molecular features relevant to pMad accumulation at synaptic junctions. We found that strong Mad alleles generally disrupt both synaptic and nuclear pMad, whereas moderate Mad alleles have a wider range of phenotypes and can selectively impact different BMP signaling pathways. Interestingly, regulatory Mad mutations reveal that synaptic pMad appears to be more sensitive to a net reduction in Mad levels than nuclear pMad. Importantly, a previously uncharacterized allele, Mad8, showed markedly reduced synaptic pMad but only moderately diminished nuclear pMad. The postsynaptic composition and electrophysiological properties of Mad8 neuromuscular junctions (NMJs) were also altered. Using biochemical approaches, we examined how a single point mutation in Mad8 could influence the Mad-receptor interface and identified a key motif, the H2 helix. Our study highlights the biological relevance of Smad-dependent, synaptic BMP signaling and uncovers a highly conserved structural feature of Smads, critical for normal development and function.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yuangen Yao ◽  
Bowen Gong ◽  
Daxiang Lu ◽  
Rong Gui

Quasiperiodic signal is ubiquitous and entrenched in neuronal networks, and thus taking it into consideration is necessary. The Wiener process with the intensity of σ is used here to model randomly fluctuated phase in external weak quasiperiodic signal. The departure from the normal periodicity can be governed by the parameter σ. Then, the effects of randomly fluctuated phase of signal and time-periodic coupling intensity of synaptic junctions between neurons on propagation of weak quasiperiodic signal through feed-forward Hodgkin–Huxley network are explored in detail. Increasing σ makes more neurons fire simultaneously, and better synchronous state is observed. Consequently, the external weak quasiperiodic signal introduced into all neurons in the first layer can be effectively transmitted through the whole feed-forward network via synchronization mechanism. In the case of time-periodic synaptic coupling intensity, when oscillatory frequency of synaptic coupling intensity is equal precisely to average frequency of external quasiperiodic signal, the propagation of weak quasiperiodic signal is optimal. Additionally, rapid oscillation of synaptic coupling intensity hinders or even kills the propagation of quasiperiodic signal to great depths of neuronal network, provided σ is not large enough.


2020 ◽  
Vol 64 (4-5-6) ◽  
pp. 353-366
Author(s):  
Subhra Prakash Hui ◽  
Tapas Chandra Nag ◽  
Sukla Ghosh

The zebrafish (Danio rerio), among all amniotes is emerging as a powerful model to study vertebrate organogenesis and regeneration. In contrast to mammals, the adult zebrafish is capable of regenerating damaged axonal tracts; it can replace neurons and glia lost after spinal cord injury (SCI) and functionally recover. In the present paper, we report ultrastructural and cell biological analyses of regeneration processes after SCI. We have focused on event specific analyses of spinal cord regeneration involving different neuronal and glial cell progenitors, such as radial glia, oligodendrocyte progenitors (OPC), and Schwann cells. While comparing the different events, we frequently refer to previous ultrastructural analyses of central nervous system (CNS) injury in higher vertebrates. Our data show (a) the cellular events following injury, such as cell death and proliferation; (b) demyelination and remyelination followed by target innervation and regeneration of synaptic junctions and c) the existence of different progenitors and their roles during regeneration. The present ultrastructural analysis corroborates the cellular basis of regeneration in the zebrafish spinal cord and confirms the presence of both neuronal and different glial progenitors.


2019 ◽  
Author(s):  
Tho Huu Nguyen ◽  
Tae Hee Han ◽  
Stuart Newfeld ◽  
Mihaela Serpe

ABSTRACTBone morphogenetic proteins (BMPs) shape normal development and function via canonical and non-canonical signaling pathways. When activating the canonical pathway, BMPs initiate signaling by binding to transmembrane receptors that phosphorylate pathway effectors, the Smad proteins, inducing their translocation into the nucleus and thus regulation of target genes. Phosphorylated Smads also accumulate at cellular junctions, but this non-canonical signaling modality remains less defined. We have recently reported that phosphorylated Smad (pMad in Drosophila) accumulates at synaptic junctions in complexes with genetically distinct composition and regulation. Here we examined a wide collection of Drosophila Mad alleles and searched for molecular features relevant to pMad accumulation at synaptic junctions. We found that strong Mad alleles generally disrupt both synaptic and nuclear pMad accumulation, whereas moderate Mad alleles have a wider range of phenotypes and could selectively impact different BMP signaling modalities. Interestingly, synaptic pMad appeared more sensitive to net reduction in Mad levels than nuclear pMad. Importantly, a previously uncharacterized allele, Mad8, showed markedly reduced synaptic pMad levels but only moderately diminished nuclear pMad signals. The postsynaptic composition and electrophysiological properties of Mad8 NMJs were similarly altered. Using biochemical approaches, we examined how single point mutations such as S359L, present in Mad8, could influence the Mad-receptor interface and we identified a key molecular determinant, the H2 helix. Our study highlights the biological relevance of the Smad-dependent, non-canonical BMP signaling and uncovers a highly conserved structural feature of Smads, critical for normal development and function.


2019 ◽  
Author(s):  
Hadi Rahmaninejad ◽  
Tom Pace ◽  
Shashank Bhatt ◽  
Bin Sun ◽  
Peter M Kekenes-Huskey

Nucleotides comprise small molecules that perform critical signaling and energetic roles in biological systems. Of these, the concentrations of adenosine and its derivatives, including adenosine tri-, di-, and mono-phosphate are dynamically controlled in the extracellular-space by ecto-nucleotidases that rapidly degrade such nucleotides. In many instances, the close coupling between cells such as those in synaptic junctions yields tiny extracellular 'nanodomains' within which the charged nucleotides interact with densely-packed membranes and biomolecules. While the contributions of electrostatic and steric interactions within such nanodomains are known to shape diffusion-limited reaction rates, less is understood about how these factors control the kinetics of sequentially-coupled ecto-nucleotidase-catalyzed reactions. To rank the relative importance of these factors, we utilize reaction-diffusion numerical simulations to systematically probe coupled enzyme activity in narrow junctions. We perform these simulations in nanoscale geometries representative of narrow extracellular compartments, within which we localize sequentially- and spatially-coupled enzymes. These enzymes catalyze the conversion of a representative charged substrate such as (ATP) into substrates with different net charges, such as (AMP) and (Ado). Our modeling approach considers electrostatic interactions of diffusing, charged substrates with extracellular membranes, and coupled enzymes. With this model, we find that 1) Reaction rates exhibited confinement effects, namely reduced reaction rates relative to bulk, that were most pronounced when the enzyme was close to the pore size and 2) The presence of charge on the pore boundary further tunes reaction rates by controlling the pooling of substrate near the reactive protein akin to ions near trans-membrane proteins. These findings suggest how remarkable reaction efficiencies of coupled enzymatic processes can be supported in charged and spatially-confined volumes of extracellular spaces.


Sign in / Sign up

Export Citation Format

Share Document