modify surface
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kathleen L. Vergunst ◽  
David N. Langelaan

AbstractHydrophobins are small proteins that are secreted by fungi, accumulate at interfaces, modify surface hydrophobicity, and self-assemble into large amyloid-like structures. These unusual properties make hydrophobins an attractive target for commercial applications as green emulsifiers and surface modifying agents. Hydrophobins have diverse sequences and tertiary structures, and depending on the hydrophobin, different regions of their structure have been proposed to be required for self-assembly. To provide insight into the assembly process, we determined the first crystal structure of a class I hydrophobin, SC16. Based on the crystal structure, we identified a putative intermolecular contact that may be important for rodlet assembly and was formed in part by the N-terminal tail of SC16. Surprisingly, removal of the N-terminal tail did not influence the self-assembly kinetics of SC16 or the morphology of its rodlets. These results suggest that other regions of this hydrophobin class are required for rodlet formation and indicate that the N-terminal tail of SC16 is amenable to modification so that functionalized hydrophobin assemblies can be created.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012033
Author(s):  
A A Rezvan ◽  
J V Morozova ◽  
V S Klimin

Abstract This paper presents a study of the use of silicon Si for element base manufacture of micro- and nanoelectronics by using combined methods of focused ion beams and atomic layer plasma chemical etching. This technology makes it possible to modify surface of Si substrates in the required topology and geometry, followed by removal of atoms to obtain nanoscale elements. The influence of parameters of method of focused ion beams and plasma chemical etching on parameters of the formed structures is analyzed. So, for example, for formation of structures with maximum roughness, it is necessary to increase values of parameters responsible for reactive ion etching, these are such parameters as: the power of capacitive plasma source, the mixing voltage, and the flow rate of an inert gas (argon).


Author(s):  
Bethany Claridge ◽  
Jonathan Lozano ◽  
Qi Hui Poh ◽  
David W. Greening

Extracellular vesicles (EVs) hold great promise as therapeutic modalities due to their endogenous characteristics, however, further bioengineering refinement is required to address clinical and commercial limitations. Clinical applications of EV-based therapeutics are being trialed in immunomodulation, tissue regeneration and recovery, and as delivery vectors for combination therapies. Native/biological EVs possess diverse endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype. Moreover, EVs are important components of paracrine signaling in stem/progenitor cell-based therapies, are employed as standalone therapies, and can be used as a drug delivery system. Despite remarkable utility of native/biological EVs, they can be improved using bio/engineering approaches to further therapeutic potential. EVs can be engineered to harbor specific pharmaceutical content, enhance their stability, and modify surface epitopes for improved tropism and targeting to cells and tissues in vivo. Limitations currently challenging the full realization of their therapeutic utility include scalability and standardization of generation, molecular characterization for design and regulation, therapeutic potency assessment, and targeted delivery. The fields’ utilization of advanced technologies (imaging, quantitative analyses, multi-omics, labeling/live-cell reporters), and utility of biocompatible natural sources for producing EVs (plants, bacteria, milk) will play an important role in overcoming these limitations. Advancements in EV engineering methodologies and design will facilitate the development of EV-based therapeutics, revolutionizing the current pharmaceutical landscape.


2021 ◽  
Author(s):  
Aashi R. Gurijala ◽  
Amber A. Chow ◽  
Shaurya Khanna ◽  
Nikhil C. Suresh ◽  
Pranav V. Penmatcha ◽  
...  

Abstract When different semiconductors are integrated into hetero-junctions, native oxides generate interfacial defects and cause electronic recombination. Two state-of-the-art integration methods, hetero-epitaxy and Direct Wafer Bonding (DWB), require temperatures > 400°C to reduce native oxides. However, T > 400°C leads to defects due to lattice and thermal expansion mismatches. In this work, DWB temperatures are lowered via Nano-Bonding™ (NB) at T ≤ 220°C and P ≤ 60 kPa (9 psi). NB uses Surface Energy Engineering (SEE) at 300K to modify surface energies (γT) to far-from-equilibrium states, so cross-bonding occurs with little thermal activation and compression. SEE modifies γT and hydro-affinity (HA) via chemical etching, planarization, and termination that are optimized to yield 2-D Precursor Phases (2D-PP) metastable in ambient air and highly planar at the nano- and micro- scales. Complementary 2D-PPs nano-contact via carrier exchange from donor 2D-PP surfaces to acceptor ones. Here, NB models and SEE are applied to the DWB of GaAs to Si for photo-voltaics. SEE modifies (1) the initial γT0 and HA0 measured via Three Liquid Contact Angle Analysis, (2) the oxygen coverage measured via High Resolution Ion Beam Analysis, and (3) the oxidation states measured via X-Ray Photoelectron Spectroscopy. SEE etches hydrophobic GaAs oxides with γT = 33.4 ± 1 mJ/m2, and terminates GaAs (100) with H+, rendering GaAs hydrophilic with γT = 60 ± 2 mJ/m2. Similarly, hydrophilic Si native oxides are etched into hydrophobic SiO4H2. H+- GaAs nano-bonds reproducibly to Si, as measured via Surface Acoustic Wave Microscopy, validating the NB model and SEE design.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3061
Author(s):  
A. Joseph Nathanael ◽  
Tae Hwan Oh

Biopolymer coatings exhibit outstanding potential in various biomedical applications, due to their flexible functionalization. In this review, we have discussed the latest developments in biopolymer coatings on various substrates and nanoparticles for improved tissue engineering and drug delivery applications, and summarized the latest research advancements. Polymer coatings are used to modify surface properties to satisfy certain requirements or include additional functionalities for different biomedical applications. Additionally, polymer coatings with different inorganic ions may facilitate different functionalities, such as cell proliferation, tissue growth, repair, and delivery of biomolecules, such as growth factors, active molecules, antimicrobial agents, and drugs. This review primarily focuses on specific polymers for coating applications and different polymer coatings for increased functionalization. We aim to provide broad overview of latest developments in the various kind of biopolymer coatings for biomedical applications, in order to highlight the most important results in the literatures, and to offer a potential outline for impending progress and perspective. Some key polymer coatings were discussed in detail. Further, the use of polymer coatings on nanomaterials for biomedical applications has also been discussed, and the latest research results have been reported.


TAPPI Journal ◽  
2020 ◽  
Vol 19 (9) ◽  
pp. 437-443
Author(s):  
VED NAITHANI ◽  
LUCIAN LUCIA ◽  
HASAN JAMEEL ◽  
PETER W. HART

The working hypothesis serving as basis for this study is that pulping to a higher kappa number will produce a higher yield pulp, and then treating that pulp with a surface reactive lignin peroxidase to ablate surface lignin will increase specific bonding area. In the present case, the working hypothesis was modified so that soybean peroxidase (SBP) works like lignin peroxidase to modify surface lignin on high-kappa, high-yield softwood pulps to facilitate enhanced fiber-to-fiber bonding such that the resulting paper strength is similar to the lower kappa soft-wood pulp generally used to make linerboard. Soybean peroxidase is actually a plant peroxidase that exhibits lignin peroxidase-like activity. It is not a lignin peroxidase derived from white rot fungus. The current work did show a significant improvement in pulp yield (62.2% vs. 55.2% yield for a 103-kappa control linerboard grade sheet), while treatment with SBP showed that tensile, burst, and STFI properties of the pulp were improved, although more convincing data needs to be obtained.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1883 ◽  
Author(s):  
Zhi Chien Ng ◽  
Rosyiela Azwa Roslan ◽  
Woei Jye Lau ◽  
Mehmet Gürsoy ◽  
Mustafa Karaman ◽  
...  

The non-selective property of conventional polyurethane (PU) foam tends to lower its oil absorption efficiency. To address this issue, we modified the surface properties of PU foam using a rapid solvent-free surface functionalization approach based on the chemical vapor deposition (CVD) method to establish an extremely thin yet uniform coating layer to improve foam performance. The PU foam was respectively functionalized using different monomers, i.e., perfluorodecyl acrylate (PFDA), 2,2,3,4,4,4-hexafluorobutyl acrylate (HFBA), and hexamethyldisiloxane (HMDSO), and the effect of deposition times (1, 5 and 10 min) on the properties of foam was investigated. The results showed that all the modified foams demonstrated a much higher water contact angle (i.e., greater hydrophobicity) and greater absorption capacities compared to the control PU foam. This is due to the presence of specific functional groups, e.g., fluorine (F) and silane (Si) in the modified PU foams. Of all, the PU/PHFBAi foam exhibited the highest absorption capacities, recording 66.68, 58.15, 53.70, and 58.38 g/g for chloroform, acetone, cyclohexane, and edible oil, respectively. These values were 39.19–119.31% higher than that of control foam. The promising performance of the PU/PHFBAi foam is due to the improved surface hydrophobicity attributed to the original perfluoroalkyl moieties of the HFBA monomer. The PU/PHFBAi foam also demonstrated a much more stable absorption performance compared to the control foam when both samples were reused for up to 10 cycles. This clearly indicates the positive impact of the proposed functionalization method in improving PU properties for oil absorption processes.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 314 ◽  
Author(s):  
Ana Isabel Nicolas-Silvente ◽  
Eugenio Velasco-Ortega ◽  
Ivan Ortiz-Garcia ◽  
Loreto Monsalve-Guil ◽  
Javier Gil ◽  
...  

The implant surface features affect the osseointegration process. Different surface treatment methods have been applied to improve the surface topography and properties. Trace of different elements may appear on the implant surface, which can modify surface properties and may affect the body’s response. The aim was to evaluate the roughness based on the surface treatment received and the amount and type of trace elements found. Ninety implants (nine different surface treatment) were evaluated. Roughness parameters were measured using white-light-interferometry (WLI). The arithmetical mean for Ra, Rq, Rt, and Rz of each implant system was calculated, and Fisher’s exact test was applied, obtaining Ra values between 0.79 and 2.89 µm. Surface chemical composition was evaluated using X-ray photoelectron spectroscopy (XPS) at two times: as received by the manufacturer (AR) and after sputter-cleaning (SC). Traces of several elements were found in all groups, decreasing in favor of the Ti concentration after the sputter-cleaning. Within the limitations of this study, we can conclude that the surface treatment influences the roughness and the average percentage of the trace elements on the implant surface. The cleaning process at the implant surface should be improved by the manufacturer before assembling the implant.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jordan T. Abell ◽  
Alex Pullen ◽  
Zachary J. Lebo ◽  
Paul Kapp ◽  
Lucas Gloege ◽  
...  

AbstractThe accurate characterization of near-surface winds is critical to our understanding of past and modern climate. Dust lofted by these winds has the potential to modify surface and atmospheric conditions as well as ocean biogeochemistry. Stony deserts, low dust emitting regions today, represent expansive areas where variations in surficial geology through time may drastically impact near-surface conditions. Here we use the Weather Research and Forecasting (WRF) model over the western Gobi Desert to demonstrate a previously undocumented process between wind-driven landscape evolution and boundary layer conditions. Our results show that altered surficial thermal properties through winnowing of fine-grained sediments and formation of low-albedo gravel-mantled surfaces leads to an increase in near-surface winds by up to 25%; paradoxically, wind erosion results in faster winds regionally. This wind-albedo-wind feedback also leads to an increase in the frequency of hours spent at higher wind speeds, which has implications for dust emission potential.


Sign in / Sign up

Export Citation Format

Share Document