transient temperature field
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 25)

H-INDEX

16
(FIVE YEARS 2)

Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 210
Author(s):  
Sami Ernez ◽  
François Morency

Researchers have focused in the last five years on modelling the aircraft ground deicing process using CFD (computational fluid dynamics) in order to reduce its costs and pollution. As preliminary efforts, those studies did not model the ice melting nor the diffusion between deicing fluids and water resulting from the melting process. This paper proposes a CFD method to simulate this process filling these gaps. A particulate two-phase flow approach is used to model the spray impact on ice near the contaminated surface. Ice melting is modelled using an extended version of the enthalpy-porosity technique. The water resulting from the melting process is diffused into the deicing fluid forming a single-phase film. This paper presents a new model of the process. The model is verified and validated through three steps. (i) verification of the species transport. (ii) validation of the transient temperature field of a mixture. (iii) validation of the convective heat transfer of an impinging spray. The permeability coefficient of the enthalpy-porosity technique is then calibrated. The proposed model proved to be a suitable candidate for a parametric study of the aircraft ground deicing process. On the validation test cases, the precision of heat transfer prediction exceeds 88%. The model has the ability of predicting the deicing time and the deicing fluid quantities needed to decontaminate a surface.


2021 ◽  
Author(s):  
Ninh The Nguyen ◽  
John H Chujutalli

Abstract FEA-based Gaussian density heat source models were developed to study the effect of convective and radiative heat sinks on the transient temperature field predicted by the available approximate analytical solution of the purely conduction-based Goldak’s heat source. A new complex 3D Gaussian heat source model, incorporating all three modes of heat transfer, i.e., conduction, convection and radiation, has been developed as an extension of the Goldak heat source. Its approximate transient analytical solutions for this 3-D moving heat source were derived and numerically benchmarked with the available measured temperature & weld pool geometry data by Matlab programming with ~5 to 6 times faster than FEA-based simulation. The new complex 3D Gaussian heat source model and its approximate solution could significantly reduce the computing time in generating the transient temperature field and become an efficient alternative to extensive FEA-based simulations of heating sequences, where virtual optimisation of a melting heat source (i.e. used in welding, heating, cutting or other advanced manufacturing processes) is desirable for characterisation of material behaviour in microstructure evolution, melted pool, microhardness, residual stress and distortions.


Author(s):  
Ammar H. Elsheikh ◽  
S. Shanmugan ◽  
T. Muthuramalingam ◽  
Ravinder Kumar ◽  
F. A. Essa ◽  
...  

Structures ◽  
2021 ◽  
Vol 29 ◽  
pp. 614-627
Author(s):  
Chenhui Qian ◽  
Chengjun Huang ◽  
Sijia Chen ◽  
Xiaobing Song

2021 ◽  
Vol 233 ◽  
pp. 04046
Author(s):  
Changhao Zhang ◽  
Hu Li ◽  
Jianyu Yang ◽  
Huawei Lu ◽  
Peng Su

According to the structural characteristics of thin-walled parts, a model slicing method is proposed, and its mathematical process is established. The three-dimensional transient temperature field in the process of synchronous powder feeding laser cladding is studied and verified by numerical simulation method, and the thin-walled parts formed by later experimental processing are processed by the results of numerical simulation. Using the simulation results of temperature field as the basis for optimizing the processing parameters, the forming path of thin-walled parts is programmed and optimized, and the experimental verification shows the reliability of this method.


Sign in / Sign up

Export Citation Format

Share Document